NATIONAL COLLEGE (AUTONOMOUS)

Nationally Re-Accredited with 'A+' Grade by NAAC (Affiliated to Bharathidasan University) TIRUCHIRAPPALLI – 620 001

DEPARTMENT OF STATISTICS B.Sc., STATISTICS SYLLABUS

2022 - 2023 Onwards

VISION: To make students a great statistician, creating employment upon completion of the course, preparing students for competitive examinations.

MISSION: We strive to develop students into outstanding experts in statistics.

OBJECTIVES: Statistics is a science which deals with data arise from various phenomena. Statistics plays an important role in almost all the disciplines of sociological and Biological Sciences, Economics, Computer Science and Information Technology. The main objective of the course is to make students to learn the fundamental principles, the scope of Statistics, to understand the theoretical basis of various realms of Statistical methods and to train the students in the application of various analytical tools in solving the real life problems.

LEARNING OUTCOMES:

- Able to understand and apply the concepts of statistics and various statistical tools in different areas of its application and hence able to solve a wide range of problems associated with Statistics.
- Able to conduct statistical surveys and experimental studies and to demonstrate data analysis together with proper and effective interpretations.
- Able to handle statistical packages for practical utility and also able to develop new software programs in accordance with the requirements for solving a problem.

CARRIER IN STATISTICS: After the completion of undergraduate (B.Sc. Statistics) course, students can pursue higher education in the field of statistics, professional courses and research level studies.

Postgraduate	Professional Courses	
M. Sc. Statistics	M. Sc. Bio-Statistics	M.B.A
M. Sc. Statistics with Computer Applications	M. Sc. Demography	M.C.A.
M. Sc. Data Science / Data Analytics	M. Sc. Quantitative Economics	C.A
M. Sc. Operations Research	M. Sc. Business Analytics	F.R.M.
M. Sc. Information Technology	M. Sc. Computer Science	C.F.A.
M. Stat	M.Sc. Applied Data Science	C.C.A.
M. Pharm.	M.Sc. Big Data Analytics	I.C.W.A.

Job Opportunities					
Statistical Investigator (TNPSC)	Bio-Statistician				
Block Health Statistician (TNPSC)	Data Scientist				
Statistician	Data Analyst				
Young professional (Statistics) in MOSPI	Actuarial Analyst				
Agriculture Statistical Officer	Operational Researcher				
Field Officer (Statistics)	Market Researcher				
Statistics Subject Matter Expert	Meteorologist				

Programme Outcomes – (PO)

At the completion of the Undergraduate Programme, the student will be able to accomplish the following outcomes:

PO No.	Programme Outcomes	Graduate Attributes
PO1	Integrate a strong foundation in statistics	Disciplinary Knowledge
PO2	Develop language skills by helping them express their ideas and views clearly and effectively and Assist students in understanding the statistical skills and develop their ability to work both independently and in groups.	Communication Skills
PO3	Identify and apply appropriate principles and methodologies to solve a wide range of problems associated with statistics	Critical Thinking and Problem Solving
PO4	Help students do research projects and apply them for the upliftment for their career and gain proficiency in using statistical software for data analysis	Analytical Reasoning and Technology Competency
PO5	Involve students in various activities thereby help them apply the moral and ethical standards of statistics in their career.	Moral and Ethical Awareness
PO6	To make them familiar with the modern concepts in statistics and engage them in Self-regulating and life-long learning in the broadest perspective of hi-tech change	Self Directed and Lifelong Learning

Programme Specific Outcomes – (PSO)

At the completion of the Undergraduate Programme, the student will be able to accomplish the following outcomes:

PSO No.	Programme Specific Outcomes
PSO1	Understand how to collect, classify, analyze, compile and interpret the data
PSO2	Ability to analyze the data by using Microsoft Excel, R-Programming, C-Programming and SPSS Software
PSO3	Motivate students to pursue career in related disciplines, especially the Statistics, Bio-Statistics, Data Science and Actuarial Science

KNOWLEDGE LEVEL – (KL)

K1: Remember K2: Understand K3: Apply K4: Analyze K5: Evaluate K6: Create

B.Sc. STATISTICS SYLLABUS (2022 – 2023 ONWARDS)

Semester	Part	Sub. Code	Course	Hrs.	Credits	Int.	Ext.	Total
	Ι	U22T1 / U22H1 / U22S1	Tamil – I / Hindi – I / Sanskrit – I	6	3	25	75	100
	II	U22E1	English – I	6	3	25	75	100
		U22ST1	Descriptive Statistics	5	5	25	75	100
т	тт	U22ST2P	Practical – I(Non-Sitting)	3	-			
1	111	U22AMST1	Mathematics – I	5	5	25	75	100
		U22AMST2P	Mathematics – II(Non-Sitting)	3	-			
	IV	U22ES	Environmental Science	2	2	25	75	100
				30	18			
	Ι	U22T2 / U22H2 / U22S2	Tamil – II / Hindi – II / Sanskrit – II	6	3	25	75	100
	II	U22E2	English – II	6	3	25	75	100
		U22ST3	Probability Theory	5	5	25	75	100
Π	ш	U22ST2P	Practical – I(Non-Sitting)	3	3	25	75	100
11	111	U22AMS2P	Mathematics – II(Non-Sitting)	3	3	25	75	100
		U22AMST3	Mathematics – III	5	5	25	75	100
	IV	U22STSBE1	Digital Era	2	2	25	75	100
				30	24			
	Ι	U22T23/U22H3/U22S3	Tamil – III / Hindi – III / Sanskrit – III	6	3	25	75	100
	II	U22E3	English – III	6	3	25	75	100
		U22ST4	Discrete Probability Distributions	5	5	25	75	100
	ш	U22ST5E1	Vital Statistics	3	3	25	75	100
III	111	U22AMST4	Operations Research – I	4	4	25	75	100
		U22AMST5P	Operations Research – II (Non-Sitting)	2	-			
	IV	U22STSBE2	Introduction to R	2	2	25	75	100
	11	U22STSBE3P	Computational Lab – I (Using R)	2	2	25	75	100
				30	22			
	Ι	U22T4 / U22H4 / U22S4	Tamil – IV / Hindi – IV / Sanskrit – IV	6	3	25	75	100
	II	U22E4	English – IV	6	3	25	75	100
		U22ST6	Continuous Probability Distributions	5	5	25	75	100
		U22ST7P	Computational Lab – II	3	3	25	75	100
IV	III		(Using Spreadsheet)	-				100
		U22AMST5P	Operations Research – II (Non-Sitting)	2	3	25	75	100
		U22AMST6	Operations Research – III	4	4	25	75	100
	IV	U22STNME1P	Data Analysis using Excel	2	2	25	75	100
					2	25	75	100
		11000000		30	25	25	7.5	100
		U22018	Statistical Inference – I	6	5	25	/5	100
		U22019 U220T10	Applied Statistics	0 5	4	25	15	100
	111	U225110	C – Programming	2	4	25	15	100
V		U225111P	Computational Lab – III (Using C)	5	5	25	15	100
		U22ST12ES	Data Analysis using SDSS	0	3	25	75	100
	IV	U22STINWEZE	Soft Skills	2	2	25	75	100
		02235	Soft Skills	20	25	23	15	100
		U22ST13	Statistical Inference – II	50	<u>43</u> 5	25	75	100
		U22ST13	Design of Experiments	5	J	25	75	100
		U22ST15	Statistical Quality Control	5	+ Л	25	75	100
	III	U22ST15	Computational Lab = IV (Using SPSS)	3	4	25	75	100
VI		U22ST17F5	Actuarial Statistics	5	5	25	75	100
		U22ST18P	Group Project	5	<u> </u>	50	50	100
	IV	U22GS	Gender Studies	1	1	25	75	100
	11			30	26	23	15	100
			Total	180	140		1	

SEMESTER - I

CORE – I: DESCRIPTIVE STATISTICS

Semester: I Sub. Code: U22ST1

Hours: 5 Credits: 5

PREAMBLE

This is an introductory course in statistics designed to provide students with the basic concepts of statistics. Descriptive statistics are used to describe the basic concept and analyze of a univariate and bivariate data in a study.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Recall the basic concept data, survey, sampling, graphs, measures of central tendency, dispersion, correlation and regression	K1
CO2	Classify the data, diagrammatic, average, skewness, kurtosis and the concepts correlation and regression	K2
CO3	Apply the nature of graphs, discrete and continuous case of central tendency, dispersion and correlation	К3
CO4	Analyze the coefficient of variation and correlation coefficient between two variables, and inference of regression lines	K4
CO5	Interpret the relationship of averages, coefficient of variation, Karl Pearson's correlation and Spearman rank correlation	K5
CO6	Construct the graphs and simple linear regression equation	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	3	3	9	9
CO2	9	9	3	3	3	3
CO3	3	3	3	1	1	3
CO4	3	3	3	1	3	1
CO5	3	1	3	1	1	1
CO6	3	3	1	3	1	1
Weightage	30	28	16	12	18	18
Weighted Percentage of						
Course contribution to PO's	55.56	51.85	29.63	22.22	33.33	33.33
Correlation between CO & PO 1: Low		3: M	ledium		9: High	

Unit I

Statistics – Definition, Functions, Applications and Limitations – Statistical Survey: Planning and Executing – Data – Primary and Secondary – Drafting the Questionnaire – Pilot Survey

Unit II

Sampling – Essentials and Methods of Sampling (Concept only) – Classification – Meaning and Objectives – Types – Formation of Distribution: Discrete, Continuous and Relative. Tabulation – Role, Parts and Rules – Diagrammatic and Graphs

Unit III

Measures of Central Tendency: Average – Definition – Types – Arithmetic Mean (A.M.) – Merits and Demerits – Simple and Weighted – Median – Merits and Demerits - Mode – Relationship of Averages – Geometric Mean (G.M.) – Harmonic Mean (H.M.) – Relationship of A.M., G.M. and H.M – Simple Problem Only

Unit IV

Measures of Dispersion: Variation – Definition – Properties – Methods of Studying Variation – Range – Quartile Deviation – Mean Deviation – Standard Deviation – Variance - Coefficient of Variation – Skewness – Kurtosis – Simple Problem Only

Unit V

Correlation Coefficients – Definition - Karl Pearson's – Spearman's Rank Correlation – Regression Analysis Definition – Properties – Simple Linear Regression – Simple Problem Only

Text Books:

1. S. P. Gupta (Reprint 2022): Statistical Methods, 46^{th} Rev. Ed., Sultan Chand & Sons, New Delhi. Unit – I : Page No.: 1.7 - 1.16, 2.2 - 2.10, 3.2 - 3.12Unit – II : Page No.: 4.2 - 4.5, 5.2 - 5.8, 5.15 - 5.19, 6.2 - 6.12, 6.24 - 6.28, 6.36 - 6.38Unit – III : Page No.: 7.4 - 7.10, 7.14 - 7.22, 7.29 - 7.35, 7.38 - 7.41, 7.47 - 7.50 & 7.52Unit – IV : Page No.: 8.2 - 8.20, 8.25 - 8.28, 9.2 - 9.22Unit – V : Page No.: 10.2 - 10.15, 10.25 - 10.31, 11.2 - 11.14

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3^{rd} Ed., New Age International Publishers. Page No.: 07 - 10, 17, 30 - 34, 47 - 58, 72 - 80, 372 - 387

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.

Semester: I & II Sub. Code: U22ST2P

PREAMBLE

The main emphasis of this course is to equip the student with necessary analytic and technical skills to compute the various descriptive measures and probability theory concept by using calculator.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	List the basic notations and formulas of descriptive statistics and probability theory	K1
CO2	Demonstrate the concept of statistical data using frequency table, graphical representations, descriptive statistics and Bayes theorem	K2
CO3	Solve the univariate and bivariate data of descriptive statistics, discrete and continuous random variables	К3
CO4	Examine the skewness, kurtosis, and random variables in probability theory	K4
CO5	Evaluate the concept of correlation coefficient, regression equations and Bayes theorem	К5
CO6	Solve the problems of conditional probability situation	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	3	3	1	9
CO2	9	3	3	3	3	9
CO3	3	3	1	3	1	3
CO4	3	1	1	1	3	3
CO5	3	1	3	1	1	3
CO6	1	1	3	3	3	1
Weightage	28	18	14	14	12	28
Weighted Percentage of						
Course contribution to PO's	51.85	33.33	25.93	25.93	22.22	51.85
Correlation between CO & PO 1:	Low	3: M	ledium		9: High	1

- 1. Construction of Frequency Table
- 2. Diagrammatic and Graphical Representation
- 3. Measures of Central Tendency
- 4. Measures of Dispersion
- 5. Measures of Skewness and Kurtosis
- 6. Correlation Coefficients
- 7. Regression Equations
- 8. Conditional Probability
- 9. Baye's Theorem
- 10. Random Variables (One & Two Dimensional)

* Practical – I based on Core Paper I & III

ALLIED-I: MATHEMATICS – I

Semester: I Sub. Code: U22AMST1

PREAMBLE

The learning objective of the algebra, matrices, differentiation and simple mathematical series is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Relate the basic functions of binomial series, polynomial equations and Eigen values	K1
CO2	Illustrate the concept of exponential series, Horner 's method and logarithmic differentiation	K2
CO3	Utilize the Hamilton theorem, product rule and Jacobians of mathematical series	К3
CO4	Distinguish the irrational and complex roots, Taylor's and Maclaurin's series	K4
CO5	Justify the concept of partial fractions, matrix and inverse matrix	K5
CO6	Discuss exponential and logarithmic series, differentiation of x^n , e^x , log x, sin x, cos x, tan x	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	3	3	3	1	1
CO2	9	9	3	1	3	1
CO3	1	3	1	3	1	3
CO4	3	1	3	1	3	1
CO5	1	3	1	1	1	3
CO6	1	1	1	3	1	1
Weightage	24	20	12	12	10	10
Weighted Percentage of						
Course contribution to PO's	44.44	37.04	22.22	22.22	18.52	18.52
Correlation between CO & PO 1: Low		3: M	ledium	•	9: High	1

Unit–I: Algebra

Partial fractions, binomial, exponential and logarithmic series (statement only) summation and approximation – Simple problems only

Unit–II: Theory of Equations

Polynomial equations with real coefficients, irrational roots, complex roots, symmetric functions of roots, transformation of equation by increasing decreasing roots by a constant - reciprocal equations. Horner's method to find a root approximately – Simple problems only

Unit–III: Matrices

Symmetric, skew – symmetric, orthogonal and unitary matrices – consistency of equations, Eigen values and Eigen – vectors, Cayley – Hamilton theorem (without proof) – verification computation of inverse matrix using Cayley– Hamilton theorem– Simple problems only

Unit –IV: Differentiation

Function – Classification of functions – Limit of a function – simple examples – Continuous function – Differentiation of x^n , e^x , $\log x$, $\sin x$, $\cos x$, $\tan x$ – product rule – Quotient rule – Functions of function (Exclude Hyperbolic function) Logarithmic differentiation (Omit-Transformation, Implicit functions) Differentiation of one function with respect to another function – Simple problems only

Unit-V: Mathematical Series

Expression of function – Taylor's and Maclaurin's series (statement only) Expansion of e^x , sinx, cosx, log (1+x), (1+x)ⁿ Jacobians

* Students should be trained to solve example problems only.

Text Books:

1. P.R. Vittal, Allied Mathematics, Margham Publications

Unit-I: Page 1.1 to 4.21, Examples: 1 to 7 (Page 1.2 to 1.7), Examples: 1 to 6 (Page 2.4 to 2.3), Examples: 1 to 6 (Page 3.3 to 3.6), Examples: 1 to 5 (Page 4.2 to 4.3); **Unit-II:** Page 6.1 to 6.69, Examples: 1 to 5 (Page 6.4 to 6.7), Example: 1 to 2 (Page 6.21 to 6.22), Examples: 1 to 5(Page 6.27 to 6.29), Examples: 1 to 4 (Page 6.22 to 6.25); **Unit-III:** Page 5.1 to 5.9, 5.18 to 5.23, 5.39 to 5.47, 5.50 to 5.51, Examples: 1 to 5(Page 5.8 to 5.11), Examples: 1 to 5(Page 5.20 to 5.23), Examples: 1 to 2 (Page 5.41 to 5.42).

2. S. Narayanan, T. K. Manicavachagom Pilley (2009): Calculus (Vol. – I), Viswanathan, S., Printers & Publishers Pvt Ltd

Unit-IV: Page 1 to 11, 24 to 27, 30 to 37, 49 to 52, 60 to 62, Examples: 1 to 4(Page 5 to 6), Examples: 1 to 5(Page 31), Examples: 1, 2(Page 32), Examples: 1 to 3 (Page 33 to 34), Examples: 1 to 6(Page 38 to 39), Examples: 1 to 3(Page 51); **Unit-V:** Chapter-7, Page 164-166, Examples: 1 to 5(Page 166 to 171)

Reference Book:

1. R.Hanumantha Rao & T.K.Manickavasagom Pillay S.Narayanan (2015): Ancillary Mathematics (Vol. – I) S.Vishwanathan Printers & Publishers

ALLIED-II: MATHEMATICS – II

Semester: I & II Sub. Code: U22AMST2P

Hours: 6 (3 + 3) Credits: 3

PREAMBLE

The learning objective of the algebraic and transcendental equations with solved methods, finite differences, Lagrange's interpolation and Newton's difference formula.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	List the basic concept of algebraic equations, transcendental equations and finite differences	K1
CO2	Explain the method of bisection. False position, backward and forward differences	K2
CO3	Apply the iteration method, Newton Raphson method and Lagrange's interpolation formula	К3
CO4	Examine the solutions of transcendental equations and finite differences	K4
CO5	Interpret the concept of Lagrange's interpolation and Newton difference formula	K5
CO6	Adapt to find root the solution of various equations and finite differences	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	3	1	3	3	3
CO2	9	3	3	1	3	1
CO3	1	3	1	3	1	1
CO4	9	1	3	1	3	3
CO5	9	3	1	3	1	3
CO6	1	3	1	3	3	1
Weightage	38	16	10	14	14	12
Weighted Percentage of						
Course contribution to PO's	70.37	29.63	18.52	25.93	25.93	22.22
Correlation between CO & PO 1:	Low	3: M	ledium	-	9: High	

Unit–I

Different methods to find the solutions of algebraic and transcendental equations – Bisection method – Method of False Position

Unit–II

Iteration method - Newton Raphson method - Generalized Newton's method

Unit–III

Finite Differences – Forward differences – Backward differences – Central differences –symbolic relations and separation of symbols

Unit-IV

Newton's forward and backward difference formula - Lagrange's interpolation formula

Unit - V

Numerical Differentiation: Newton's forward and backward difference formula

Text Book:

S. S. Sastry, (2010): Introductory Methods of Numerical Analysis, Prentice Hall of India Pvt. Ltd

Reference Book:

A. Singaravelu (2016): Numerical Methods, Meenakshi Agency

SEMESTER - II

CORE – III: PROBABILITY THEORY

Semester: I Sub. Code: U22ST3

The learning objective of the Probability Theory and Random Variables is to provide students with essential tools in probability theory to understand the theory of univariate and bivariate probability distributions and including the concept of Bayes' theorem.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Remember the basic knowledge on fundamental probability concepts, random variable, distribution function and mathematical expectation.	K1
CO2	Understand the concept of addition and multiplication probability, conditional probability, probability mass function and probability density function.	K2
CO3	Apply the related concept of discrete and continuous random variables and their probability distributions including expectation and moments.	К3
CO4	Analyze the properties of probability mass function, probability density function and bivariate random variables.	K4
CO5	Evaluate the theory of probability, conditional probability and mathematical Expectation.	K5
CO6	Build the applications of Chebychev's Inequality	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	3	3	3	3
CO2	9	3	3	3	3	3
CO3	9	3	3	3	1	3
CO4	3	1	3	1	3	1
CO5	3	1	3	1	1	1
CO6	3	1	1	3	1	1
Weightage	36	18	16	14	12	12
Weighted Percentage of						
Course contribution to PO's	66.67	33.3	29.63	25.93	22.2	22.2
Correlation between CO & PO 1:	Low	3: M	edium		9: High	1

Unit – I

Probability – Classical and Empirical – Terminology – Axiomatic Probability – Addition Theorem - Multiplication Theorem – Conditional Probability - Baye's Theorem - Simple Problem Only

Unit – II

Random Variables - Discrete Case – Probability Mass Function - Continuous Case - Probability Density Function – Distribution Function – Properties - Simple Problem Only

Unit – III

Two Dimensional Random Variables – Joint and Marginal Probability Mass Function – Joint and Marginal Density Function – Simple Problem Only

Unit – IV

Mathematical Expectation - Properties - Variance - Properties - Covariance - Simple Problem Only

Unit – V

Moment Generating Function – Properties – Cumulants - Properties – Characteristic Function - Properties – Inversion Theorem (Statement Only) – Uniqueness Theorem (Statement Only) - Hally Bray Theorem (Statement Only) - Chebychev's Inequality

Text Book:

 S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I : Page No.: 3.3 – 3.12, 3.27 – 3.29, 3.31, 3.41 – 3.43, 3.52 – 3.54, 4.4 – 4.12 Unit – II : Page No.: 5.3 – 5.22 Unit – III : Page No.: 5.34 – 5.51 Unit – IV : Page No.: 6.3 – 6.20 Unit – V : Page No.: 7.3 – 7.18, 7.28 – 7.36

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 90 – 100, 138 – 140, 174 – 182

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

ALLIED-III: MATHEMATICS – III

Semester: I Sub. Code: U22AMST3

Hours: 5 Credits: 5

PREAMBLE

The learning objective of the integration, differentiation, partial differentiation, sets and functions and simple sequence & series is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Recall the basic concepts of integration, differentiation, sets and functions	K1
CO2	Classify the concept of definite integral, order differential equations, supremum and infimum	K2
CO3	Construct the evaluation of integrals, integral test and D'Alembert's ratio test	К3
CO4	Compare the first and second order differential equations, convergence and divergence	K4
CO5	Evaluate lagrange's equations and Leibnitz's test	K5
CO6	Solve the differential equations of e^{ax} , \sin^{ax} , $\cos ax$	K6

CO – PO MAPPING (Course Articulation Matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	3	3
CO2	9	9	3	3	3	3
CO3	3	3	1	3	1	3
CO4	1	1	3	1	3	1
CO5	1	3	1	1	1	3
CO6	1	1	1	3	1	1
Weightage	24	26	18	14	12	14
Weighted Percentage of						
Course contribution to PO's	44.4	48.1	33.3	25.9	22.2	25.93
Correlation between CO & PO 1:	Low	3: M	ledium		9: High)

Unit–I: Integral Calculus

Integration of irrational, trigonometric functions, Bernoulli's formula for integration by parts, reduction formulae, properties of definite integral and simple problems, Evaluation of double, triple integrals, simple applications to area, volume and centroid – Simple problems only.

Unit –II: Ordinary Differential Equations

First order and higher differential equations - Second order differential equations with constant coefficients e^{ax} , \sin^{ax} , $\cos ax$

Unit–III: Partial Differential Equations

Formation, complete integrals and general integrals, four standard types, lagrange's equations - Simple problems only

Unit-IV: Sets and Functions

Bounded sets – functions – supremum and infimum – sequences – limit of a function – sum and production creasing sequence–sequence $\{a^n\}$ –Infinite series–convergence – divergence – Geometric series – Properties

Unit–V: Sequence and Series

Test of comparison, Integral test and Cauchy's test D'Alembert's ratio test – Alternating series – Leibnitz's test – series of positive and negative terms – Absolute and conditional convergence

Note: Students should be trained to solve simple problems only.

Textbooks:

- 1. P. R. Vittal (2012): Allied Mathematics, 3rd ed., Margham Publications.
- 2. Bali N. P and Manish Goyal, (2011): A Text book of Engineering Mathematics, 8th Ed., Laxmi Publications Pvt. Ltd.

References:

- 1. Ancillary Mathematics by S. Narayanan and others, S. Viswanathan Publishers, 2009
- 2. Allied Mathematics by P. R. Vittal (Margham Publications) Shantinarayanan, DifferentialCalculus, S. Chand & Co., 1964

Semester: II Sub. Code: U22STSBE1

Hours: 2 Credits: 2

PREAMBLE

The learning objective of the computers, networks, office automation tools, google forms, university grants commission, e-learning and big data analytics is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Define the basic ideas of computers, office automation tools and	V1
	MOOC	N1
CO2	Summarize the concept of operating system, google forms, and e-	K)
02	Governance	N2
CO3	Construct the uses of internet, applications of charts for Excel and	K3
005	evaluation of statistical software's	NJ
CO4	Theme of MOOC, swayam and digital library	K4
CO5	Explain the concept of Big data and social networks	K5
CO6	Elaborate the use of EPR and Cyber Security	K6

<u>CO – PO MAPPING (Course Articulation Matrix)</u>

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	3	1
CO2	9	3	3	3	3	9
CO3	9	3	3	3	3	9
CO4	9	3	3	3	3	1
CO5	1	1	1	1	1	1
CO6	1	1	1	1	1	1
Weightage	38	20	20	14	14	22
Weighted Percentage of						
Course contribution to PO's	70.37	37.00	37.04	25.93	25.90	40.70
Correlation between CO & PO 1:	Low	3: M	ledium		9: High	

UNIT - I

Fundamentals of Computers – Hardware - Software – Operating System – Windows Operating System – Mobile Operating System - Android – Communication System – Types of Networks – Uses of Internet

UNIT - II

Office Automation Tools: Microsoft Word – Page Layout – Font Dialog Box – Creating a Table – Microsoft Excel – Format Cells – Charts – Formulas – Microsoft PowerPoint – Creating a Presentation – Google Forms

UNIT - III

Electronic Governance – E-Governance in India – Common Service Centre – E-Governance Plan – Digital India – Agencies – Electronic Payment and Receipt (EPR) – Digital Locker – e-District Services

UNIT - IV

University Grants Commission – E–Learning – Objectives – Massive Open Online Course (MOOC) – Swayam – Digital Library – E-Journals and Books – Cyber Security

UNIT - V

Big Data – Data Analytics – Information Technology (IT) Act – Social Networks – Merits and Demerits – Statistical Software's – Applications – SPSS – R - SAS

Study Materials:

https://www.msuniv.ac.in/images/academic/ug/Computer%20for%20Digital%20Era%20%20E_Matirial .pdf

https://www.uc.edu/webapps/af/hr/CUSTOMGUIDE/content/content/computerbasics.pdf

* Students should be trained to Objective and Descriptive Type Questions based on Study Materials

SEMESTER - III

CORE- IV: DISCRETE PROBABILITY DISTRIBUTIONS

Semester: III Sub. Code: U22ST4

PREAMBLE

The impart knowledge on discrete distributions and their applications in various fields. These distributions often involve statistical analyses of counts of an event occurs.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Define Bernoulli-Binomial-Poisson-Geometric-Multinomial	V 1
	distribution	KI
CO2	Compare the M.G.F and C.G.F of Binomial- Negative	K)
	Binomial distribution, Geometric-Hyper Geometric distribution	N2
CO3	Make use of distributions in problem solving	К3
CO4	Examine Poisson Approximation to Binomial distribution	K4
CO5	Justify fitting a Binomial and Poisson distribution	K5
CO6	Estimate Power series distribution	K6

<u>CO-PO MAPPING</u> (course articulation matrix):

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	9	3	3
CO3	9	3	3	3	3	1
CO4	3	9	3	1	1	3
CO5	9	1	1	3	3	3
CO6	3	1	3	3	3	1
Weightage	42	32	28	28	22	20
Weighted percentage of course	77.77	59.25	51.85	51.85	40.74	37.03
contribution to PO's						

Correlation between CO & PO 1: Low

3: Medium

9: High

Unit – I

Bernoulli – Binomial distribution – Moments Generating Function – Cumulants – Fitting a Binomial distribution - Simple Problem Only

Unit – II

Poisson distribution – Moments Generating Function – Cumulants – Poisson Approximation to Binomial –Fitting a Poisson distribution – Simple Problem Only

Unit – III

Negative Binomial distribution – Moment Generating Function – Cumulants – Poisson distribution limiting case of negative binomial distribution

Unit – IV

Geometric distribution –Lack of Memory – Moment Generating Function – Hyper-Geometric Distribution – Approximation to Binomial

Unit – V

Multinomial distribution - Moments - Applications - Power Series distribution - Moments - M.G.F. of PSD

Text Books:

1. S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I : Page No.: 8.3 - 8.12, 8.16 - 8.18, 8.21 - 8.23Unit – II : Page No.: 8.30 - 8.36, 8.38 - 8.40, 8.47 - 8.49Unit – III : Page No.: 8.52 - 8.59Unit – IV : Page No.: 8.60 - 8.66Unit – V : Page No.: 8.67 - 8.73

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 140 – 160

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

MAJOR ELECTIVE-I: VITAL STATISTICS

Semester: III Sub. Code: U22ST5E1

PREAMBLE

Vital Statistics is defined as the branch of biometry which deals with the data on live births, deaths, migration, foetal deaths, marriages and divorces.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Recall the role of vital statistics, uses and types of rates	K1
CO2	Classify Fertility, Mortality, Migration	K2
CO3	Identify CDR, ASDR, CBR, ASFR, IMR	К3
CO4	Compare General Fertility Rate and Total Fertility Rate	K4
CO5	Rule on Construction of life table	K5
CO6	Evaluate the population growth, NRR and GRR	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	3	9	9
CO3	9	9	3	3	3	3
CO4	9	3	1	9	1	3
CO5	3	3	3	3	3	1
CO6	3	3	3	1	1	1
Weightage	42	36	28	28	26	26
Weightage percentage of	77.77	66.66	51.85	51.85	48.14	48.14
course contribution to PO's						
Correlation between CO & PO 1:	3: Medium	•	9: High	•	•	

Unit - I

Introduction to Vital Statistics – Uses - Methods – Measurement of Population - Rates and Ratios of Vital Statistics

Unit - II

Morality – Crude Death Rate (C.D.R.) - Specific Death Rates (S.D.R.) – Age- Specific Death Rates (Age-S.D.R.) - Infant Mortality Rate (I.M.R.) - Standardized Death Rates – Simple Problem Only

Unit - III

Life Table - Stationary and Stable Population – Central Mortality Rate - Force of Mortality – Assumptions, Description and Construction of Life Tables – Uses of Life Tables – Simple Problem Only

Unit - IV

Fertility - Crude Birth Rate (C.B.R.) - General Fertility Rate (G.F.R.) - Specific Fertility Rate (S.F.R.) – Age-Specific Fertility Rate - Total Fertility rate (T.F.R.) – Simple Problem Only

Unit - V

Population Growth – Crude Rate of Natural Increase - Pearl's Vital Index - Gross Reproduction Rate (G.R.R.) - Net Reproduction Rate (N.R.R.) – Simple Problem Only

Text Books:

1. S. C. Gupta and V. K. Kapoor (2021): Fundamentals of Applied Statistics, 4th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I to Unit - V: Page No.: 9.2 – 9.58

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 542 – 548

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

ALLIED - IV: OPERATION RESEARCH - I

Semester: III Sub. Code: U22AMST4

Hours: 4 Credits: 4

PREAMBLE

Operations research is an analytical method of problem-solving and decision-making and finding optimal solutions.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	What is Operation Research and its applications	K1
CO2	Classify LPP and Mathematical formulation of LPP	K2
CO3	Solve simplex, transportation and assignment methods	К3
CO4	Examine balanced and unbalanced assignment problem	K4
CO5	Assess the dual problem, mixed form of dual method	K5
CO6	Discuss Big-M and graphical solution of LPP	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	3	9	3	3	9
CO3	9	9	3	9	3	3
CO4	9	9	3	3	3	1
CO5	3	3	1	3	1	3
CO6	1	3	3	3	3	1
Weightage	40	36	28	30	22	26
Weighted percentage of	74.07	76.66	51.85	55.55	40.74	48.14
course contribution to PO's						
Correlation between CO & PO 1: L	3: Medium	(9: High			

Unit I

Operations Research – origin and development of O.R – Nature and Features of O.R – Definition of O.R – Scientific method in O.R – Methodology of O.R – Applications of O.R – Linear programming problem (LPP)-Mathematical formulation of LPP – Graphical Solution

Unit II

Simple method – Big m method- Two – phase method.

Unit III

Duality in LPP – Formulation and dual problem – Dual problem when primal problem is the standard form – dual problem when primal problem is in the mixed Form – Dual simple method

Unit IV

Transportation problem –Initial Basic Feasible solution –North – West corner method – Least method and Vogel's Approximation method and MODI method to solve a Transportation problem.

Unit V

Assignment problem – Balanced and Unbalanced Assignment problem – Hungarian method to solve an Assignment problem

Text Book:

Kanti Swarup, P. K. Gupta and Manmohan (2017): Operations Research, Sultan Chand & Sons-New Delhi

Reference Book:

Taha H. A. (2019): Operations Research: An Introduction, 10th Ed., Pearson.

ALLIED - V: OPERATIONS RESEARCH - II

Hours: 4 (2 + 2) Credits: 3

PREAMBLE

To equip the students with optimization Techniques and solve them

COURSE OUTCOMES

CO. No	Course_Outcomes	Knowledge Level
CO1	Recall Graphical method and feasible solutions	K1
CO2	Demonstrate Sequencing problem, Assignment problem	K2
CO3	Experiment with Networking scheduling by PERT and CPM	К3
CO4	Simplify Simplex method, Big M method	K4
CO5	Prove Two phase method and Dual simplex method	K5
CO6	Combine NWC, VAM, LCM and Modi method	K6

<u>CO-PO MAPPING (course articulation matrix)</u>

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	9	3	3
CO3	9	9	3	3	3	1
CO4	9	3	3	1	1	1
C05	3	3	1	1	1	1
CO6	9	3	3	3	1	1
Weightage	48	36	28	26	18	16
Weighted percentage of course	88.88	66.66	51.85	48.14	33.33	29.62
contribution to PO's						
Correlation between CO & PO 1: Low	3: N	/ledium	9	: High		

- 1. Graphical Method
- 2. Simplex Method
- 3. Big M Method
- 4. Two-Phase Method
- 5. Duality and Dual Simplex Method
- 6. Transportation problems:
 - North west method
 - Least cost method
 - VAM
 - MODI method
- 7. Assignment problems
- 8. Sequencing problems

Networking scheduling by PERT & CPM

SKILL BASED ELECTIVE - II: INTRODUCTION TO R

Semester: III Sub. Code: U22STSBE2

Hours: 2 Credits: 2

PREAMBLE

The learning objective of the R packages, working of dataset, functions, graphs and measures of central tendency, association and correlations is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Relate the introduction of R, packages, working with graphs	K1
CO2	Outline the concept of data sorting, merging and transpose	K2
CO3	Develop the syntax of graphs and analysis tools	K3
CO4	Function of descriptive statistics and measures of association	K4
CO5	Interpret the concept of functions, charts and frequency table	K5
CO6	Construct the descriptive statistics and correlation coefficient	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	9	3	3	9
CO2	9	9	3	3	3	9
CO3	9	3	3	3	3	3
CO4	9	3	3	3	3	1
CO5	1	3	1	1	1	1
CO6	1	1	1	1	1	1
Weightage	38	28	20	14	14	24
Weighted Percentage of						
Course contribution to PO's	70.4	51.9	37	25.9	25.9	44.44
Correlation between CO & PO 1:	Low	3: M	edium		9: High)

UNIT - I

UNIT - II

Working with Graphs – Graphical Parameters – Adding Text, Customized Axes and Legends – Combining Graphs – Creating New Variables – Recoding and Renaming Variables – Missing Values – Type Conversions – Sorting and Merging Datasets

UNIT - III

Functions - Mathematical Functions - Statistical Functions - Probability Functions - Character Functions - Applying Functions to Matrices and Data Frames - Control Flow - Transpose

UNIT - IV

Graphs - Bar Plots - Pie Charts - Histograms - Kernal Density Plots - Box Plots - Dot Plots - Simple Syntax

UNIT - V

Statistics – Descriptive Statistics – Frequency and Contingency Tables – Measures of Association – Correlations – Simple Syntax

Text Book:

Kabacoff L. R (Reprint, 2020): R in Action: Data Analysis and Graphics with R, 2nd Ed., Dreamtech Press, New Delhi.

Unit – I : Page No.: 03 – 44 Unit – II : Page No.: 47 – 87 Unit – III : Page No.: 90 – 113 Unit – IV : Page No.: 117 – 136 Unit – V : Page No.: 137 – 157

* Students should be trained to Objective and Descriptive Type Questions based on Text Book

Semester: III Sub. Code: U22STSBE3P

Hours: 2 Credits: 2

PREAMBLE

The learning objective of the computations of diagrammatic & graphical representations, frequency tabulation, measures of central tendency & dispersion and correlation coefficient is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	List the construction of diagrammatic representations	K1
CO2	Infer the concept of measures of central tendency & dispersion	K2
CO3	Apply the syntax of statistical analysis	K3
CO4	Analyze of graphical representations and simple analysis tools	K4
CO5	Explain the concept of frequency tabulation and correlations	K5
CO6	Create the descriptive statistics and correlation coefficient	K6

CO – PO MAPPING (Course Articulation Matrix)

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	9	3	9
CO3	9	9	3	3	3	3
CO4	9	3	3	3	3	3
CO5	9	3	1	1	1	1
CO6	3	1	1	1	1	1
Weightage	48	34	26	26	20	26
Weighted Percentage of						
Course contribution to PO's	88.90	63.00	48.15	48.15	37.00	48.15
Correlation between CO & DO 1:		2 • N/	ladium		0. ⊔iah	

Correlation between CO & PO 1: Low

3: Medium

9: High

- 1. Diagrammatic & Graphical Representations
 - ✤ Bar Diagram
 - ✤ Line Diagram
 - Pie Diagram
 - ✤ Histogram
- 2. Frequency Tabulation
- 3. Measures of Central Tendency
- 4. Measures of Dispersion
- 5. Correlation Analysis

SEMESTER - IV

CORE- VI: CONTINUOUS PROBABILITY DISTRIBUTIONS

Semester: IV Sub. Code: U22ST6

Hours: 5 Credits: 5

PREAMBLE

Continuous probability distribution used in large number of applications, widely used in large sample theory where normality is involved.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Define Normal, Log Normal, Beta and Uniform distributions	K1
CO2	Relate Normal distribution limiting case of Binomial distribution	K2
CO3	Make use of continuous distribution to solve the problem	K3
CO4	Discover MGF and CGF of Normal distribution	K4
CO5	Prove De-Moivre's, Lindenberg and Levy, Liapounoff's and Cramer's Theorems	K5
CO6	Develop Mean, Variance and Moments of Exponential distribution	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	9	9	9	9	3	3	
CO2	9	9	3	3	3	3	
CO3	9	3	3	1	1	1	
CO4	3	9	3	1	1	1	
CO5	9	3	1	1	1	1	
CO6	9	3	3	3	3	1	
Weightage	48	36	22	18	12	10	
Weightage of course	88.88	66.66	40.74	33.33	22.22	18.54	
contribution to PO's							
Correlation between CO & PO 1: Low 3: Medium 9: High							

Unit – I

Normal distribution – Definition – Normal distribution limiting case of Binomial distribution – Characteristics of Normal curve — Median – Mode - Moment Generating Function – Cumulants

Unit – II

Importance of Normal distribution – Fitting a Normal distribution –Simple Problem Only – Log-Normal Distribution (Concept Only)

Unit – III

Uniform Distribution – Moments - Simple Problem Only – Triangular Distribution (Concept Only) – Gamma Distribution – Cumulant Generating Functions – Limiting form of Gamma – Additive Property

Unit – IV

Beta Distribution – First and Second kind – Mean and Variance – Exponential Distribution – Definition – Moment Generating Function

Unit – V

Central Limit Theorem – Applications – De-Moivre's Theorem – Lindeberg Theorem – Levy Theorem – Liapounoff's Theorem – Cramer's Theorem (without proof)

Text Books:

- 1. S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.
- Unit I : Page No.: 9.4 9.14
- Unit II : Page No.: 9.16 9.22 & 9.29
- Unit III : Page No.: 9.30 9.40
- Unit IV : Page No.: 9.42 9.47, 9.53 9.58
- Unit V : Page No.:.9.79 9.84, 9.87 9.90
- 2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 140 160

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

CORE - VII: COMPUTATIONAL LAB - II (Using Spreadsheet)

Semester: IV Sub. Code: U22ST7P

Hours: 3 Credits: 3

PREAMBLE

The learning objectives of this expose the students to the statistical analysis of data using Spreadsheet.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Recall the construction of diagrammatic representations	K1
CO2	Explain the concept of measures of central tendency & dispersion	K2
CO3	Make use of the formula of statistical analysis	К3
CO4	Theme of graphical representations and simple analysis tools	K4
CO5	Inference the concept of correlation and regression	K5
CO6	Estimate the curve fitting and regression analysis	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	9	9	9	9	9	9	
CO2	9	9	9	9	9	3	
CO3	9	3	3	3	3	3	
CO4	9	3	3	3	3	3	
CO5	3	3	3	1	1	1	
CO6	3	1	1	1	1	1	
Weightage	42	28	28	26	26	20	
Weightage of course							
contribution to PO's	77.78	51.90	51.85	48.15	48.15	37.00	
Conselation between CO.9. DO. 4. Law 2. Madium 0. Uish							

Correlation between CO & PO 1: Low

3: Medium

9: High

- 1. Diagrammatic Representations
 - ✤ Bar Diagram: Simple and Multiple
 - ✤ Line Diagram: Simple and Multiple
 - Pie Diagram
- 2. Graphical Representations
 - ✤ Histogram
 - ✤ Curve Fitting
- 3. Measures of Central Tendency
- 4. Measures of Dispersion
- 5. Correlation Analysis
- 6. Regression Analysis

ALLIED - VI: OPERATIONS RESEARCH - III

Semester: III Sub. Code: U22AMST6

Hours: 4 Credits: 4

PREAMBLE

Operations Research used to finding optimum solutions from available source to solve a real life problems

COURSE OUTCOMES

CO No	Course Outcomes	Knowledge Level
CO1	Define sequencing, network, queuing and game theory	K1
CO2	Relate maximin and minimax principle	K2
CO3	Identify Games with and without saddle point, mixed strategy	K3
CO4	Categorize classification of queuing model – M/M/1 queuing	KA
0.04	systems with finite and infinite capacity	174
CO5	Compare EOQ with and without shortages	K5
CO6	Construct a network diagram by CPM and PERT	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	9	9	3	3
CO2	9	9	9	3	3	3
CO3	9	9	3	3	3	3
CO4	3	3	3	3	1	1
CO5	3	3	1	1	1	1
CO6	9	3	3	3	3	1
Weightage	42	36	28	22	14	12
Weightage of course						
contribution to PO's	77.77	66.66	51.85	40.74	25.92	22.22
Correlation between CO & P	0 1: Low	3: Med	ium	9: High		

Unit - I

Sequencing problem – meaning – problem of sequencing – processing n jobs through two machines – n jobs through K-machines – 2 jobs through K- machines

Unit - II

Game Theory – Two Person Zero – sun games, the maximin – minimax principle – Games without saddle points – mixed strategies – Graphical Solution of $2 \times n$ and $m \times 2$ Games – Dominance property

Unit - III

Networking Scheduling By PERT/CPM

Unit - IV

Queuing Theory – Introduction – Elements of a Queuing system – characteristics of queuing systems – classification of queuing Model – M/M/1 queuing systems with finite and infinite capacity

Unit - V

Inventory control - EOQ with Shortage and without shortages - multi-item Deterministic problem

Text Book:

Kanti Swarup, P. K. Gupta and Manmohan (2017): Operations Research, Sultan Chand & Sons-New Delhi

Reference Books:

Taha H. A. (2019): Operations Research: An Introduction, 10th Ed., Pearson Publication

NON-MAJOR ELECTIVE - I: DATA ANALYSIS USING EXCEL

Semester: IV Sub. Code: U22STNME1P

PREAMBLE

The learning objective of the computations of measures of central tendency & dispersion, correlation analysis, regression analysis and t – test is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Recall the construction of diagrammatic representations	K1
CO2	Explain the concept of measures of central tendency & dispersion	K2
CO3	Make use of the formula of statistical analysis	K3
CO4	Theme of graphical representations and simple analysis tools	K4
CO5	Inference the concept of correlation and regression	K5
CO6	Estimate the regression analysis and t - test	K6

<u>CO – PO MAPPING (Course Articulation Matrix)</u>

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	9	9	3
CO3	9	3	3	3	3	3
CO4	9	3	3	3	3	3
CO5	3	3	3	1	1	1
CO6	3	1	1	1	1	1
Weightage	42	28	28	26	26	20
Weighted Percentage of						
Course contribution to PO's	77.78	51.90	51.85	48.15	48.15	37.00
Correlation between CO & PO 1:	Low	3: Medium		9: High		1

Hours: 2 Credits: 2

- 1. Diagrammatic & Graphical Representations
 - * Bar Diagram
 - * Line Diagram
 - * Pie Diagram
 - * Histogram
- 2. Measures of Central Tendency
- 3. Measures of Dispersion
- 4. Correlation Analysis
- 5. Regression Analysis
- 6. t Test

SEMESTER - V

CORE VIII: STASTICAL INFERENCE –I

Semester: V Code: U22ST8

PREAMBLE

Statistical inference is the process of making conclusion by statistical techniques. This technique applied for various field like education, industries, marketing etc.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Tell the Estimate, Estimation, Estimators, Parameters,	K1
001	Statistic, Parameters Space	
CO2	Understand the Characteristics of Estimators, Minimum	K)
02	variance unbiased Estimators	N2
CO3	Utilize the Maximum Likelihood Estimators and its	K2
005	properties	NJ
CO4	Analyze the Method of minimum variance – Method of	KA.
04	moments – Method of least squares.	Λ4
C05	Prove the Cramer- Rao- Inequality theorem and Rao-	W5
0.05	Blackwell theorem	K)
COG	Test for Confidence interval and Confidence limits for	K6
	large and small sample	K0

<u>CO-PO MAPPING</u> (course articulation matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	3
CO2	9	9	9	3	9	9
CO3	9	3	3	9	1	1
CO4	3	3	1	9	9	3
CO5	9	9	9	3	9	9
CO6	9	9	9	9	9	9
Weightage	48	40	40	42	46	34
Weighted percentage of						
course contribution to PO's	88.88	74.07	74.07	77.77	85.18	62.96
Correlation between CO & PO 1:	Low	3: Medium	•	9: High	•	•

Hours: 6 Credits: 5

Unit-I

Introduction – Characteristics of estimators – Invariance property of consistent estimators – Sufficient conditions for consistency – Efficient estimators – Simple problem only

Unit-II

Minimum Variance Unbiased Estimators – Sufficiency – Factorization theorem (statement only) – Cramer-Rao inequality – Rao-Blackwell theorem – Simple problem only

Unit-III

Methods of Estimation – method of maximum likelihood estimation – Properties of maximum likelihood estimators – Theorems (statement only) – Simple problem only

Unit-IV

Method of minimum variance - Method of moments - Method of least squares - Simple problem only

Unit-V

Confidence Interval - Confidence Limits - Simple problem only

Text Books:

1. S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I : Page No.: 17.3 – 17.10 Unit – II : Page No.: 17.10 – 17.30 Unit – III : Page No.: 17.31 – 17.42 Unit – IV : Page No.: 17.43 – 17.47 Unit – V : Page No.: 17.48 – 17.53

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 236 – 247

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

CORE IX: APPLIED STATISTICS

Semester: V Sub. Code: U22ST9

PREAMBLE

To get knowledge on index numbers, time series and their applications in various fields. This application should be apply for various fields for framing policies.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
COI	Remembering the index numbers, weighted index numbers, Simple	K 1
COI	Aggregative Method – Simple Average of Price Relatives Method	N1
CO2	Understanding the Laspeyres, Paasche's, Bowley, Fisher's,	K2
02	Marshall – Kelly's index numbers.	112
CO3	Applying the Unit test, Time reversal test, Factor reversal test,	K3
0.05	Circular test	N.J
CO4	Analyzing the Measurement of trend, Graphic method ,Semi-average	КЛ
04	method, Moving average method, Method of least squares.	114
CO5	Evaluating the Ratio to trend method – Ratio to moving average	K5
005	method –Link relative method	N.S
C06	Creating the different types of index numbers and different types of	K6
000	trend	170

<u>CO-PO MAPPING (course articulation matrix)</u>

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	9	3	1	9
CO2	3	9	3	9	9	9
CO3	9	1	9	9	9	9
CO4	9	3	3	9	9	3
CO5	9	9	9	1	9	9
CO6	9	9	9	9	9	9
Weightage	48	40	42	40	46	48
Weighted percentage of						
course contribution to PO's	88.88	74.07	77.77	74.07	85.18	88.88
Correlation between CO & PO 1:	Correlation between CO & PO 1: Low		9	: High		•

Unit – I

Index Numbers- Definition- Uses - Classification – Methods of Constructing Index Numbers – Unweighted Index Numbers – Simple Aggregative Method – Simple Average of Price Relatives Method – Simple Problem Only

Unit – II

Weighted Index Numbers – Laspeyres – Paasche's – Bowley – Fisher's – Marshall – Kelly's – Simple Problem Only

.Unit – III

Tests of Adequacy – Unit test – Time reversal test (with proof) – Factor reversal test (with proof) – Circular test – Chain Index Numbers – Constructing a Chain Index – Conversion of Chain Index to Fixed Index – Simple Problem Only

Unit – IV

Times series – Definition – Utility – Components – Measurement of trend – Graphic method – Semi-average method – Moving average method – Method of least squares (Fitting the straight line) – Simple Problem Only

Unit – V

Measurement of seasonal variations – Method of simple averages – Ratio to trend method – Ratio to moving average method – Link relative method – Simple Problem Only

Text books:

1. S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I : Page No.: 13.2 – 13.13 Unit – II : Page No.: 13.14 – 13.23 Unit – III : Page No.: 13.24 – 13.32 Unit – IV : Page No.: 14.2 – 14.29 Unit – V : Page No.: 14.38 – 14.50

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 440 – 444, 467 – 471

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. C. Gupta and V. K. Kapoor (2021): Fundamentals of Applied Statistics, 4th Rev. Ed., Sultan Chand & Sons, New Delhi.

Semester: V Sub. Code: U22ST10

PREAMBLE

To get knowledge on c-programming, character set, tokens, structures and arrays. To understand and coding the syntax in C.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level	
CO1	Define the Character set, Tokens, Key words, Identifiers, constants,	K1	
001	variables and data types		
CO2	Illustrate the operators, categories, expressions, input and output	K)	
02	operations, reading a character.	N2	
CO3	Build the decision making, branching, simple IF statement, IF-ELSE	K3	
COS	statement, nesting of IF-ELSE statement.	KJ	
CO4	Examine the decision making, looping structure of loop control,	KA.	
04	WHILE Statement Do Statement FOR Statement.	N 4	
CO5	Asses array, one-dimensional arrays, declaration and initialization of	W5	
COS	one-dimensional arrays and two-dimensional arrays.	NJ	
C06	Develop user-defined functions, elements, definition of functions,	K6	
	structures and unions	NU	

<u>CO-PO MAPPING (course articulation matrix):</u>

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	1	9
CO2	3	9	3	9	9	9
CO3	9	1	9	9	9	9
CO4	3	3	3	9	9	3
CO5	9	9	9	1	9	9
CO6	9	9	9	9	9	9
Weightage	42	40	42	40	46	48
Weighted percentage of						
course contribution to PO's	77.77	74.07	77.77	74.07	85.18	88.88
Correlation between CO & PO 1	: Low	3: M	ledium		9: High	

Unit – I

Introduction to C – Basic structure of C Programs – Character set – C Tokens – Key words and Identifiers – Constants – Variables - Data types - Declarations of Variables

Unit – II

Operators - categories - Expressions - Input and Output Operations - reading a character - writing a character - formatted input - formatted output

Unit – III

Decision Making and Branching - Simple IF Statement – IF-ELSE Statement – Nesting of IF-ELSE Statement – ELSE-IF Ladder - Switch Statement – ? : Operator – GOTO Statement

Unit – IV

Decision Making and Looping – Structure of Loop Control – Sentinel Loops – WHILE Statement - Do Statement – FOR Statement

Unit – V

Array – One-dimensional arrays – Declaration and Initialization of One-dimensional arrays – Two-dimensional arrays – Declaration and Initialization of Two-dimensional arrays – User–defined functions –elements – definition of functions – Structures and Unions

* Kindly avoid program based questions because they are done in core practical

Text Book:

E. Balagurusamy (Reprint, 2019): Programming in ANSI C, 8th Ed., McGraw Hill Education (India) Pvt. Ltd.

Unit – I : Page No.: 17 – 22 & 28, 39 – 50 Unit – II : Page No.: 68 – 82, 100 – 119 Unit – III : Page No.: 131 – 154 Unit – IV : Page No.: 171 – 182 Unit – V : Page No.: 212 – 229, 291 – 297, 347 – 349, 365 – 368

* Students should be trained to Objective and Descriptive Type Questions based on Text Book

Reference:

https://www.unf.edu/~wkloster/2220/ppts/cprogramming_tutorial.pdf

CORE – XI: COMPUTATIONAL LAB – III (Using C)

Semester: IV Sub. Code: U22ST11P

Hours: 3 Credits: 3

PREAMBLE

To learning the knowledge on writing a c-programming and create an own coding in C.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Recall the basic terminology of C programming	K1
CO2	Demonstrate the operators, expressions, I/O format	K2
CO3	Develop the decision making of branching and looping concept	K3
CO4	Analyze the branching and looping structure of programs	K4
CO5	Interpret the array concept, declaration and initialization	K5
CO6	Adapt the statistical tools oriented programs	K6

<u>CO-PO MAPPING</u> (course articulation matrix):

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	9	3	1	9
CO2	3	9	3	9	9	9
CO3	9	1	9	9	9	9
CO4	3	3	3	9	9	3
CO5	9	9	9	1	9	9
CO6	9	9	9	9	9	9
Weightage	42	40	42	40	46	48
Weighted percentage of						
course contribution to PO's	77.77	74.07	77.77	74.07	85.18	88.88
Correlation between CO & PO 1	: Low	3: Medium 9		9: High		

- 1. Create a Bio Data using SCANF and PRINTF functions
- 2. Compute simple and compound interest
- 3. Whether a given number is odd or even
- 4. Compute the Gross Salary for Employer
- 5. Sort an Array
- 6. Compute an Average using array
- 7. Writing a character string / number in reverse order
- 8. Find the factorial of a Number
- 9. Whether a given number is Palindrome or not
- 10. Compute Mean and Variance
- 11. Compute Correlation Coefficients
- 12. Compute Regression coefficients

MAJOR ELECTIVE-III: SAMPLING TECHNIQUES

Semester: V Sub. Code: U22ST12E3

PREAMBLE

To get erudition of random selection, allowing students to make strong statistical inference about the whole group. To get erudition the sampling theory and it's applied in various departments.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Name the population, sample, sample size, standard error, sampling, non-sampling error.	K1
CO2	Illustrate the simple random sampling, stratified random sampling and systematic random sampling.	K2
CO3	Identify the estimation of population parameter and proportion, estimation of sample size, principles of sample survey.	К3
CO4	Categorize the allocation, optimum allocation, proportional allocation, Neyman-allocation.	K4
CO5	Detetmine the ratio estimation means per unit, comparison with the mean per unit and ratio estimator.	К5
CO6	Tests the ratio estimation, regression estimation and difference estimation.	K6

<u>CO-PO MAPPING (course articulation matrix)</u>

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	9	9
CO2	9	9	1	9	9	9
CO3	3	9	9	9	9	9
CO4	1	9	9	9	9	3
CO5	9	3	9	9	1	3
CO6	9	3	9	9	1	3
Weightage	40	42	46	48	38	36
Weighted percentage of	74.07	77.77	85.18	88.88	70.37	66.66
course contribution to PO's						

Correlation between CO & PO 1: Low

3: Medium

9: High

Hours: 6 Credits: 5

Unit - I

Population – Sample – Sample Size – Sampling Distribution – Standard Error – Standard Error of Statistic – Principles of Sample Survey – Sampling and Non-Sampling Errors – Census – Limitations of Sampling – Types of Sampling

Unit - II

Simple Random Sampling - Procedures of selecting a random sample – Merits and Demerits – Attributes - Simple Problem Only – Estimation of Population Parameters and Proportion – Estimation of Sample Size

Unit - III

Stratified Random Sampling - Advantages – Estimation of Variance - Allocation of Sample Size – Proportional Allocation – Optimum Allocation – Equal Allocation – Neyman's Allocation - Optimum Allocation and Proportional Allocation - Relative Precision of Stratified Random Sampling with Simple Random Sampling

Unit - IV

Systematic Random Sampling – Some important theorems – Merits and Demerits – Circular Systematic sampling – Comparison of Simple Random Sampling and Stratified Random Sampling with Systematic Sampling – Cluster and Quota Sampling

Unit - V

Ratio Estimation – Definition - Bias of ratio estimation - comparison of the ratio estimation with the mean per unit-Regression estimation – Difference Estimators - Comparison with the Mean per unit and Ratio estimators

Text Books:

1. D. Singh and F. S. Chaudhary (2018): Theory and Analysis of Sample Survey Design, 1st Ed, New Age International Publishers.

 Unit – I
 : Page No.: 1 – 18
 Unit – II
 : Page No.: 19 – 47
 Unit – III
 : Page No.: 48 – 58

 Unit – IV
 : Page No.: 81 – 109
 Unit – V
 : Page No.: 147 – 178

2. B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 202 – 212

* Students should be trained to Descriptive Type Questions based on Text Book – 1

* Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. C. Gupta and V. K. Kapoor (2021): Fundamentals of Applied Statistics, 4th Rev. Ed., Sultan Chand & Sons, New Delhi.

Semester: V Sub. Code: U22NME2P <u>PREAMBLE</u>

The learning objective of the computations of frequency tabulation, measures of central tendency & dispersion, correlation analysis, regression analysis and chi-square test is to provide students with important concept of fundamentals.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

CO No.	Course Outcome	Knowledge Level
CO1	Show the construction of graphical representations	K1
CO2	Classify the concept of measures of central tendency & dispersion	K2
CO3	Utilize the statistical analysis	К3
CO4	Function of the simple analysis tools	K4
CO5	Justify the concept of summary statistics and correlation	K5
CO6	Discuss the correlation analysis and chi-square test	K6

<u>CO – PO MAPPING (Course Articulation Matrix)</u>

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
C01	9	9	9	9	9	3
CO2	9	9	9	9	3	3
CO3	9	3	3	3	3	3
CO4	9	3	3	3	3	3
CO5	3	3	3	1	1	1
CO6	3	1	1	1	1	1
Weightage	42	28	28	26	20	14
Weighted Percentage of						
Course contribution to PO's	77.8	51.90	51.90	48.10	37.00	25.93
Correlation between CO & PO 1:	Low	3: M	edium		9: High	

Hours: 2 Credits: 2

- 1. Diagrammatic & Graphical Representations
 - * Bar Diagram
 - * Line Diagram
 - * Pie Diagram
 - * Histogram
- 2. Measures of Central Tendency
- 3. Measures of Dispersion
- 4. Frequency Tabulation
- 5. Correlation Analysis
- 6. Chi-square Test

SEMESTER - VI

CORE-XIII: STATISTICAL INFERENCE – II

Semester – VI Sub. Code: U22ST13

PREAMBLE

To understand the testing of significance, compare the small sample and large sample test. To estimate the statistical analysis is to draw inferences.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Define the testing of hypothesis, null, alternative hypothesis, types of	K 1
COI	errors and level of significance.	K1
	Explain the procedure for solving testing of hypothesis, most	
CO2	powerful test, uniformly most powerful test and neyman-pearson	K2
	lemma.	
CO3	Construct the likelihood ratio test, parameter space, test for the mean	K3
005	of a normal population, test for the variance of a normal Population	NJ
	Compare the Small Sample: t-test for single and difference Means,	
CO4	F-test for equality of two population variances, test for Goodness off	K4
	fit and independence of attributes	
CO5	Justify the ratio to trend method, ratio to moving average method and	K 5
005	link relative method	NJ
<u>C06</u>	Estimate the different types of index numbers and different types of	K6
	trend	NU

<u>CO-PO MAPPING (course articulation matrix)</u>

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	9	9	9	3	9	9	
CO2	3	3	1	9	9	9	
CO3	9	9	9	9	9	3	
CO4	3	9	9	9	9	3	
CO5	9	1	9	9	9	9	
CO6	9	9	9	9	9	9	
Weightage	42	40	46	48	54	42	
Weighted percentage of	77.77	74.07	85.18	88.88	100	77.77	
course contribution to PO's							
Correlation between CO & BO 1: Low		2 • Mod	ium	0.1	0. High		

Correlation between CO & PO 1: Low

3: Medium

9: High

Unit - I

Testing of Hypothesis – Null and Alternative Hypothesis – Types of Errors – Level of Significance – Procedure for solving testing of hypothesis – Most powerful test – Uniformly most powerful test – Neyman–Pearson lemma – Simple problem only

Unit - II

Likelihood Ratio test (L.R.T.) – Parameter Space – Properties of L.R.T. – Test for the Mean of a Normal Population – Test for the Variance of a Normal Population

Unit - III

Large Sample: Test of significance for single Mean – Test of significance for difference Means – Test of significance for single and difference of Standard deviations – Simple problem only

Unit - IV

Small Sample: t-Test for Single and Difference Means – F-test for equality of Two Population Variances – Test for Goodness of Fit and Independence of Attributes – Simple problem only

Unit - V

Non-parametric Methods – Advantages – Run Test – Test for Randomness – Median Test – Sign Test – Mann-Whitney U test - Simple problem only

Textbook

1. S. C. Gupta and V. K. Kapoor (2020): Fundamental of Mathematical Statistics, 12th Rev. Ed., Sultan Chand & Sons, New Delhi.

Unit – I : Page No.: 18.3 – 18.15 Unit – II : Page No.: 18.21 – 18.38 Unit – III : Page No.: 14.21 – 14.34 Unit – IV : Page No.: 16.13 – 16.23, 16.37 – 16.40 & 15.24 – 15.38 Unit – V : Page No.: 18.39 – 18.50

 B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 277 – 289, 323 – 335

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference Book:

S. P. Gupta (Reprint 2022): Statistical Methods, 46th Rev. Ed., Sultan Chand & Sons, New Delhi.

CORE XIV: DESIGN OF EXPERIMENTS

Semester: VI Sub. Code: U22ST14

Hours: 5 Credits: 4

PREAMBLE

To learning knowledge of the experimental design in agricultural field and to understand of the factorial experiments apply for laboratories, research and natural sciences.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level	
CO1	Recall the design of experiments, analysis of variance and its	V 1	
COI	classifications.	N1	
CO2	Relate the completely randomized design, Randomized Block Design,	K)	
02	Latin Square Design, Estimation of One Missing Values in R.B.D.	N2	
CO3	Experiment of 2^2 factorial design, Yates Method, 2^3 factorial design.	К3	
CO4	Distinguish the confounding in factorial design, confounding in 2^3	KA	
04	experiment partial confounding in 2 ³ experiments, split plot design.	N4	
CO5	Choose the C.R.D, R,B.D, L.S.D, B.I.B.D	K5	
	Design the experiments and apply the any one of the randomized		
CO6	designs in which the degree of uncertainty with which the inference is	K6	
	drawn.		

<u>CO-PO MAPPING</u> (course articulation matrix):

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	9	9
CO2	9	9	1	9	9	9
CO3	9	9	9	9	9	3
CO4	9	9	3	9	9	1
CO5	3	3	9	3	1	9
CO6	9	3	9	3	1	9
Weightage	48	42	40	36	38	40
Weighted percentage of	88.88	77.77	74.07	66.66	70.37	74.07
course contribution to PO's						
Correlation between CO & PO 1:	Low	3: Med	ium	9:	High	•

UNIT - I

Design of Experiments – Introduction – Terminology in Experimental Design – Principles of Experimental Design – Analysis of variance – Assumptions – One-way classification – Two-way classification – Simple problem only

UNIT - II

Completely Randomized Design (C.R.D.) – Advantages and Disadvantages – Statistical Analysis of C.R.D. – Randomized Block Design (R.B.D.) – Advantages and Disadvantages – Statistical Analysis of R.B.D. (one observation) – Latin Square Design (L.S.D.) – Statistical Analysis of L.S.D. (one observation) – Estimation of One Missing Values in R.B.D.

UNIT - III

Factorial Experiments – Advantages – 2^2 Factorial Design – Main and Interaction Effects of 2^2 Design – Statistical Analysis of 2^2 Design – Yates Method – 2^3 Factorial Design – Statistical Analysis of 2^3 Design

UNIT - IV

Confounding in Factorial Design – Definition – Confounding in 2^3 Experiment – Partial Confounding in 2^3 Experiment – Split Plot Design

UNIT - V

Balanced Incomplete Block Design (B.I.B.D.) – Definition – Parameters – Incidence Matrix – Symmetric B.I.B.D. – Resolvable Design – Intra Block Analysis of B.I.B.D.

Text books:

- 1. S. C. Gupta and V. K. Kapoor (2021): Fundamentals of Applied Statistics, 4th Rev. Ed., Sultan Chand & Sons, New Delhi.
- Unit I : Page No.: 6.2 6.9, 5.2 5.9, 5.18 5.29 & 5.37 5.41
- Unit II : Page No.: 6.10 6.12, 6.17 6.20 & 6.30 6.34
- Unit III : Page No.: 6.83 6.95
- Unit IV : Page No.: 6.100 6.104, 6.117 6.118 & 6.126 6.127
- Unit V : Page No.: 6.128 6.135
- B. L. Agarwal (Reprint, 2018): Programmed Statistics, 3rd Ed., New Age International Publishers. Page No.: 612 – 627

* Students should be trained to Descriptive and Solved Problems Questions based on Text Book – 1 * Students should be trained to Objective Type Questions based on Text Book – 2

Reference book:

D. C. Montgomery (2013): Design and Analysis of Experiments, 8th Ed. John Wiley & Sons, Inc.

CORE XV: STATISTICAL QUALITY CONTROL

Semester: VI Sub. Code: U22ST15

PREAMBLE

The learning knowledge of statistical quality control and the different kinds of charts are used. The create a chart using the quality all along the arrival of materials through each of their processing to the final delivery of goods.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level	
CO1	Define the statistical quality control, definition, process and product	K1	
	control, control charts, tools for S.Q.C,		
CO2	Explain the control charts for variables, average (\overline{X}) chart, range (R)	К2	
002	chart, standard deviation (σ) chart.		
CO3	Build the control charts for attributes, chart for fraction defective,	K3	
COS	chart for number of defectives, chart for number of defects per unit.	K.J	
	Classify the operating characteristic curve, averages sample number,		
CO4	average amount of total inspection, acceptance sampling inspection	K4	
	plans.		
CO5	Compare the sequential sampling plan, sequential probability ratio	K5	
005	test, oc curve and average sample number.	K5	
C06	Creation and development of a product quality evaluation through	K6	
	improved inspection procedure.	IXU	

<u>CO-PO MAPPING</u> (course articulation matrix):

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	3	9	9
CO2	9	9	3	9	9	9
CO3	9	9	9	9	9	3
CO4	9	9	3	9	9	1
CO5	3	3	9	9	1	3
CO6	9	9	9	1	1	9
Weightage	48	48	42	40	38	34
Weighted percentage of						
course contribution to PO's	88.88	88.88	77.77	74.07	70.37	62.96
Correlation between CO & PO 1: Low		3: Med	dium	9:	High	•

Hours: 6 Credits: 4

UNIT - I

Statistical Quality Control (S.Q.C.) – Basis – Definition – Benefits – Process and Product Control – Control Charts – Tools for S.Q.C

UNIT - II

Control Charts for Variables – Average (\overline{X}) Chart – Range (R) Chart – Standard Deviation (σ) Chart – Simple Problem Only

UNIT - III

Control Charts for Attributes – Chart for Fraction Defective (p – chart) – Chart for Number of Defectives (d – chart) – Chart for Number of Defects per Unit (c – chart) – Simple Problem Only

UNIT - IV

Operating Characteristic (OC) Curve – Average Sample Number (ASN) –Average amount of Total Inspection (ATI) – Acceptance Sampling Inspection Plans – Single Sampling Plan – determination of n and c, AOQL, OC Curve - Double Sampling Plan

UNIT - V

Sequential Sampling Plan - Sequential Probability Ratio Test (S.P.R.T.) – OC and ASN Function of Sequential Sampling Plan

Text Books:

S. C. Gupta and V. K. Kapoor (2021): Fundamentals of Applied Statistics, 4th Rev. Ed., Sultan Chand & Sons, New Delhi. Unit – I to V: Page No.: 1.2 – 1.69

* Students should be trained to Objective, Descriptive and Solved Problems Questions based on Text Book

Reference Book:

Montgomery D. C. (2013): Introduction to Statistical Quality Control, 7th Ed. John Wiley & Sons, Inc.

CORE- XVI: COMPUTATIONAL LAB – IV (Using SPSS)

Semester: VI Sub. Code: U22ST16P

Hours: 3 Credits: 3

PREAMBLE

To learning the knowledge on writing a c-programming and create an own coding in C.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge Level
CO1	Relate the basic idea of graphical representations	K1
CO2	Illustarte the measures of central tendency & dispersion	K2
CO3	Construct the diagrammatic and parametric test analysis	K3
CO4	Function of the bivariate analysis	K4
CO5	Explain the non-parametric test analysis	K5
CO6	Predict the p-value of the given data set	K6

<u>CO-PO MAPPING</u> (course articulation matrix):

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	1	3	1	9
CO2	9	9	9	9	9	9
CO3	9	1	9	9	9	9
CO4	3	3	9	9	9	3
CO5	9	9	9	1	9	9
CO6	9	9	9	9	9	9
Weightage	48	40	46	40	46	48
Weighted percentage of						
course contribution to PO's	88.88	74.07	85.18	74.07	85.18	88.88
Convelotion both son CO 8 DO 1	. 1	2. 1	1 a al :a		0.111 mls	

Correlation between CO & PO 1: Low

3: Medium

9: High

- 1. Diagrammatic & Graphical Representations
 - ✤ Bar Diagram: Simple and Multiple
 - ✤ Line Diagram: Simple and Multiple
 - ✤ Pie Diagram
 - ✤ Histogram
- 2. Measures of Central Tendency
- 3. Measures of Dispersion
- 4. Correlation Analysis
- 5. Regression Analysis
- 6. Parametric Test
 - ✤ One sample t-test
 - Paired t-test
 - ✤ Independent t-test
 - ✤ One-way ANOVA test
- 7. Chi square Test
- 8. Non Parametric Test
 - Wilcoxon Signed-Rank test
 - ✤ Mann-Whitney U test

MAJOR ELECTIVE - V: ACTUARIAL STATISTICS

Semester: VI Sub. Code: U22ST17E5

Hours: 5 Credits: 5

PREAMBLE

Actuarial science used to analyze the financial costs of risk and uncertainty. And in this paper, we include quantitative aptitude to develop the student's ability skills.

COURSE OUTCOMES

CO. No	Course Outcomes	Knowledge level
CO1	Define Simple interest, Compound interest, Perpetuity, Annuity	K1
CO2	Classify Immediate Annuity, Deferred Annuity, Accumulated Annuity	K2
CO3	Make use of these concepts in real life. i.e Profit- Loss,Ratio- Proportion, Time-Distance, Time-work	К3
CO4	Analyze the effective rate of interest- Nominal rate of interest	K4
CO5	Estimate the accumulation and present values of perpetuity, Increasing and decreasing perpetuity	K5
CO6	Solve the Problems on ages, Problems on numbers and percentage.	K6

<u>CO-PO MAPPING</u> (course articulation matrix)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	9	9	9	9	9	9
CO2	9	9	9	3	3	1
CO3	9	9	9	9	9	9
CO4	3	3	3	3	1	1
CO5	3	9	3	1	1	1
CO6	9	9	9	3	3	3
Weightage	42	48	42	28	26	24
Weighted percentage of						
course contribution of PO'S	77.77	88.88	77.77	51.85	48.14	44.44
Correlation between CO & PO 1: Low		3: Medium		9: High		

Unit I

Simple Interest – Compound Interest - Effective rate of interest - Nominal rate of interest - Varying rate of interest – effective rate corresponding to a nominal rate and vice-versa present value-accumulated value - discounts - Simple Problem Only

Unit II

Annuities- immediate annuity – annuity - deferred annuity-accumulation and present values of annuities- increasing and decreasing annuities - Simple Problem Only

Unit III

Perpetuity - Immediate perpetuity – perpetuity due-deferred perpetuity - accumulation and present values of perpetuity - Increasing and decreasing perpetuity - Simple Problem Only

Unit IV

Problems on Numbers - Problems on Ages - Percentage

Unit V

Profit and Loss - Ratio and Proportion - Time and Work - Time and Distance

Text Books:

- 1. Mathematical basis of life assurance-IC-81, Insurance Institute of India Unit – I: Page No.: 01 - 16, Unit - II & III: Page no.: 27 to 67
- R. S. Aggarwal (2017): Quantitative Aptitude for Competitive Examinations, Sultan Chand & Sons, New Delhi.
 Unit IV: Page No.: 161 181, 182 194, 208 250, Unit V: Page No.: 251 293, 294 310, 341 370, 384 404

References:

1. https://www.pnw.edu/wp-content/uploads/2020/03/attendance7-1.pdf

2. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/us/en/higher-ed/en/products-

services/course-products/lial-applied-mathematics-info/pdf/LGR-Finite-Ch5.pdf

GROUP PROJECT

Objective: To enable the students to apply the statistical techniques for solving real-life problems.

A good project goes a long way in providing practical training to the students. They get an opportunity through the project to apply some of the vital theoretical concepts and techniques that had learnt in the previous Semesters.

On most of the occasions, socio-economic survey and market research surveys are periodically conducted by government agencies, NGO's and private organizations. So, it is proposed to offer good project topics to the students in these practical areas. The students will be thoroughly trained through the project not only in scientific selection of sample for data collection, but also in identifying and applying approximate statistical techniques in their projects.