M.Sc. Course Structure under CBCS (Applicable to the candidates admitted from the academic year 2016-17)

Aim	
Objective	Provide a scientific education which will equip students for a range of careers both in and beyond the boundaries of physics and cognate disciplines
Eligibility for Admission	

-	jo o					.s.			Mark	S	
este	ir N	Paper Code No.	Paper	Instrn. Hrs.	Credit	ιΗι	•	E	xt.	Total	
Semester	Paper No.	Pa Cod	Taper			Exam Hrs.	Int.	Or al	W	\mathbf{T}_{0}	
	CC-I	P16PH1	Mathematical Physics	6	5	3	25		75	5	
	CC-II	P16 PH2	Classical Mechanics	6	5	3	25		75	5	
Ι	CC-III	P16 PH3	Statistical Mechanics	6	5	3	25		75	5	
	CC-IVP	P16 PH4P	Physics Practicals- I (General & Electronics)	6	5	4	25	70	5	5	
	EC-I	P16 PH5E	Special Electronics - I	6	5	3	25		75	4	
	Papers:5			30	25					24	
	CC-V	P16 PH6	Atomic and Molecular Physics	6	5	3	25		75	5	
	CC-VI	P16 PH7	Quantum Mechanics	6	5	3	25		75	5	
	CC-VII	P16 PH 8	Nuclear and Particle Physics	6	5	3	25		75	5	
II	CC-VIIIP	P16PH 9P	Physics Practicals - II (General & Electronics)	6	4	4	25	70	5	5	
	EC-II	P16PH10E	Special Electronics - II	6	4	3	25		75	4	
	Papers:5			30	23					24	

	CC-IX	P16PH11	Electromagnetic Theory	6	5	3	25		75	5
	CC-X	P16PH12	Crystal Growth and Thin Film Physics	6	5	3	25		75	5
	CC-XIP	P16PH13P	Physics Practicals-III Advanced Electronics	6	5	4	25	70	5	5
III	EC III	P16PH14E	Numerical Methods and Programming	6	4	3	25		5	4
	EC IV	P16PH15E	Elements of Nano 6 cience and its pplications		4	3	25		75	4
	Papers:5			30	23					23
	CCXII	P16PH16	Condensed Matter Physics	6	5	3	25		75	5
	CCXIIP	P16PH17P	Physics Practicals-IV Advanced Electronics	6	5	3	25	70	5	5
IV	EC V	P16PH18E	Advanced Optics	6	4	3	25		75	4
	PROJECT	P16PHP19	Project Work and Field Visit	12	5				100	5
	Papers:5			30	19					19
Total Credits				90					90	

Core course - I - MATHEMATICAL PHYSICS

Semester - I	Course Code: P16PH			
Instruction hrs. /week: 6 hrs.	Credit : 5			

Objectives:

 To aim at providing extensive mathematical formalism for understanding and interpreting various physical problems.

UNIT I: VECTOR ANALYSIS AND VECTOR SPACE

Concept of vector and scalar fields – Gradient, divergence, curl and Laplace operator – Line integral, surface integral (problems) and volume integral – Gauss divergence theorem (problems), Green's theorem, Stoke's theorem (Problems). VectorSpace: Definitions – Linear independence of vectors – Gram-Schmidt's orthogonalisation process.

UNIT II: SPECIAL FUNCTIONS

Beta and Gamma functions – Properties –Hermite polynomial –Legendre Polynomial – Bessel functions and their respective recursion relations.

UNIT III: COMPLEX ANALYSIS

Functions of complex variables – Differentiability - Cauchy-Riemann conditions – Cauchy's integral theorem and integral formula – Residues and singularities - Cauchy's residue theorem – Evaluation of definite integrals (Trignometric functions around the unit circles).

UNIT IV: GROUP THEORY

Basic definition –Multiplication table – Subgroups, cosets and classes -Point groups and space groups-Homomorphism and Isomorphism –Reducible and irreducible representations –Schur's lemma I and II -The great Orthogonality theorem- C_2V and C_3V Character table.

UNIT V: FOURIER SERIES AND TRANSFORMS

Trignometric series – Euler's formula and Fourier series – Dirichlet's theorem, condition – Problems on periods with simple functions sinx, cosx, sin2x, cos2x, sinnx, cosnx.

Fourier transform – Integral theorem – Fourier Sine, Cosine transform - Shifting theorem – Change of scale – Evaluation of Fourier transform (Problems).

BOOK FOR STUDY

- 1. L. A. Pipes and L. R. Harvill, Applied Mathematics for Engineers and Physicists McGraw-Hill (1987).
- 2. SatyaPrakash, Mathematical Physics, Sulthan, Chand & Sons., New Delhi (2006).
- 3. Laplace and Fourier Transforms, Goyal and Gupta. Pragati Prakashan Meerut-1995.

BOOKS FOR REFERENCE

- 1. B.D.Gupta, Mathematical Physics, Vikas Publishing House Pvt Ltd., New Delhi (2006).
- 2. A. K. Ghatak, I.C. Goyal and S. J. Chua, Mathematical Physics, Mac Millan India Ltd. (1995).

Core Course - II - CLASSICAL MECHANICS

Semester – I Instruction hours/week – 6

Course Code : P16PH2 Credit : 5

Objectives:

- To learn about the fundamentals of classical generalized coordinates and Formation
- * To learn about both Lagrangian and Hamiltonian formalisms
- ✤ To apply both the formalism to certain examples
- Fundamentals of small oscillations

UNIT-I: FUNDAMENTALS AND LAGRANGIAN FORMALISM

Principle of virtual work-Generalized co-ordinates – Generalized momentum – Generalized kinetic energy – D'Alembert's principle –Lagrangian's equation of motion from D.A.P – Cyclic co-ordinates – Conservation of angular momentum and total energy.

UNIT-II: HAMILTONIAN FORMALISM

Hamilton as total energy operator – Hamilton's variational principle – Deduction of Hamilton's principle from D'Alembert's principle – Deduction of Lagrangian equation of motion from Hamilton's principle – Hamilton's equation of motion – Hamilton's equation of motion from Hamilton's variational principle.

UNIT-III: APPLICATIONS AND CANONICAL TRANSFORMATIONS

Application of Lagrangian formalism a)Atwood's machine b)Simple pendulum – Transformations a)point or contact b)Canonical – Generating function of canonical transformation – Four types of canonical transformations - Δ Variation – Principle of Least Action.

UNIT-IV: BRACKETS AND HAMILTON – JACOBI THEORY

Lagrangian and Poisson's brackets – Symmetry, invariance of Poisson bracket under Canonical transformation – Hamilton's characteristic function – Hamilton-Jacobi equation – Physical significance of S – Action – angle formalism- Kepler's problem in action – angle variables.

UNIT-V: LINEAR OSCILLATIONS

Theory of small oscillations – Normal modes of oscillations and frequencies (frequencies) – Simple harmonic oscillator. Double pendulum and its normal modes – CO_2 as linear symmetrical molecule, its normal frequencies and its normal modes.

BOOK FOR STUDY

1.	G. Aruldhas -	 Classical M 	echanics –	PHI Learning	g Pvt. New	/ Delhi (2009).

Unit	Chapter	Sections
I	3	3.3, 3.2, 3.7, 3.6, 3.4, 3.5, 3.8, 3.9
II	4,6	4.1, 4.2, 4.3, 6.2, 6.3
	3, 6	3.12, 6.5, 6.10, 6.11
IV	6, 7	6.9, 6.8, 7.2, 7.1, 7.4, 7.6
V	9	9.2, 9.3, 9.4, 9.5

BOOK FOR REFERENCE

- 1. Gupta-Kumar-Sharma, Classical Mechanics, S. Chand and Co. 1987.
- 2. H. Goldstein, Classical Mechanics, Mc Graw Hill Pvt. New Delhi 1981.

Core Course - III - STATISTICAL MECHANICS

Semester – I Instruction hours/week – 6

Course Code : P16PH3 Credit : 5

Objectives:

- ✤ To understand the fundamental principles of statistical mechanics.
- ★ To apply the quantum mechanical ideas to statistical mechanics.

UNIT – I: REVIEW OF THERMODYNAMICS

First law –Entropy and second law - Principle of degradation of energy-Thermodynamic Potentials and its reciprocity relations-Gibb's-Helmholtz relation- Thermodynamic equilibria- Nernst heat theorem-Chemical potential-Phase transitions-First order and Second order.

UNIT – II: KINETIC THEORY

Distribution function-Boltzmann transport equation for Homogeneous and Heterogeneous medium and its validity.

Kinetic theory of gases-Maxwell Boltzmann distribution law of velocities-Mean free path-Expression and experimental determination-Viscosity.

UNIT – III: STATISTICAL MECHANICS

Macro and micro states – Stirling's approximation –Classical Maxwell- Boltzmann distribution law - Principle of equipartition of energy- Phase space and ensembles - Characteristics of micro, macro and grand canonical ensemble - Liouville's theorem-Statistical equilibrium- Partition function - Relation between partition function and thermodynamic quantities-B.E statistics, F.D statistics.

UNIT – IV: QUANTUM STATISTICAL MECHANICS

Black body and Planck's radiation - Specific heat of solids-Dulong and Petit's Law-Einstein's theory- Debye's theory.

Ideal Bose gas - Energy, pressure of a gas-Gas degeneracy-Bose-Einstein condensation – properties of liquid helium.

UNIT – V: ADVANCED STATISTICAL MECHANICS

Electron gas - Free electron model and thermionic emission – Pauli's theory of para magnetism- White Dwarfs- Wiener- - Khinchine theorem and its correlation function-Bragg- Williams approximation- One dimensional Ising model.

BOOK FOR STUDY

1. Gupta, Kumar, Sharma, Statistical Mechanics, Pragat iPrakashan Publications(2005).

Unit Sections

- *I* A-1 to A-7, 13.1, 13.2.
- *II* 10, 10.1, *k*-1, *k*-2, *k*-3.
- III 2.1, 2.2, 2.7, 2.12, 1.1, 1.3, 1.7, 1.10, 3.0-4, 6.2, 6.3.
- *IV* 6.10, 7.2-1 to 7.2-3, 8.0 to 8.2, 8.4.
- V 9.2, 9.3, 9.4, 9.5, 12.8, 13.3, 13.4.

BOOKS FOR REFERENCE

- 1. Statistical Mechanics, Sathya Prakash, Pragati Prakasam Publications (2004).
- 2. Statistical Mechanics, K Huang, Wiley Eastern Ltd., New Delhi (1986).
- 3. F. Reif, Statistical and Thermal Physics, Mc Graw Hill, International Edition, Singapore (1975).
- 4. B.K Agarwal and N. Eisnor, Statistical Mechanics, Wiley Eastern Limited, New Delhi, 2nd Edn (1989).
- 5. Mayer Joseph Edward, Statistical Mechanics, John Wiley and Son, New York (1949).

Core Course - IV P PHYSICS PRACTICALS- I (General and Electronics)

Semester-I Instruction hrs /week. : 6 hrs.

Course Code : P16PH4P Credit : 5

Objectives:

- To understand the concepts, techniques in physics experiments and develop instrument handling skills.
- ✤ To develop circuit building skills and trouble shooting ability in electronic experiments.

Any 15 Experiments only

- 1. Determination of q, n, σ by elliptical fringes method.
- 2. Determination of Stefan's constant.
- 3. Determination of bulk modulus of a liquid by ultrasonic wave propagation-Acoustic Grating.
- 4. Determination of Rydberg's constant.
- 5. Study of Hall effect in a semiconductor.
- 6. Determination of dielectric constant at high frequency by Lecher wire.
- 7. Michelson Interferometer- Determination of wavelength of monochromatic source.
- 8. Determination of wavelength of monochromatic source using Biprism.
- 9. Charge of an electron by spectrometer.
- 10. Differential scanning calorimeter.
- 11. Spectrum Photo Cu/Fe spectrum.
- 12. Construction of dual regulated power supply.
- 13. Astable and monostable multivibrator using IC 555.
- 14. Design and study of Wein bridge oscillator (Op-amp).
- 15. Characteristics of UJT and applications.
- 16. Active 2ndorder filter circuits: Low pass, High pass and Band pass filters.
- 17.V-I characteristics of a solar cell.
- 18. FET amplifier (CD/CS configuration).
- 19. Polarization of light Verification of Malus law and Brewster angle of glass.
- 20. Instrumentation amplifier using four IC 741.

Core Course - V - ATOMIC AND MOLECULAR PHYSICS

Semester - II	
Instruction hrs. /week: 6 hrs.	

Course Code : P16PH6 Credit : 5

Objectives:

- ***** *To facilitate, introduce and make the students understand the basic concept to atomic spectra*
- ✤ Atoms in external fields and quantum chemistry
- Microwave and IR spectroscopy, Raman Spectroscopy and electronic spectroscopy and resonance Spectroscopy of molecules.

UNIT I : ATOMIC SPECTRA

Concept of Vector atom model and its quantum numbers-Stern –Gerlach experiments – Fine structure of hydrogen lines – Spin orbit interaction – LS-JJ coupling schemes – Selection rules-Hyperfine structure-Exchange symmetry of wave functions-Pauli's exclusion principle and its physical significance-Periodic table-Alkali type spectra-Equivalent electrons-Hund's rule.

UNIT II: ATOMS IN EXTERNAL FIELDS AND QUANTUM CHEMISTRY

Atoms in external fields: Zeeman effect-Paschen-Back effect-and its quantum mechanical treatment- Zeeman effect-Paschen-Back effect in two electron systems-selection rules-Stark effect.

Quantum chemistry of molecules: Born-Oppenheimer approximation-Heitler-London and molecular orbital theories of hydrogen molecule-Bonding and anti-bonding MOs-Huckel's molecular approximation-Application to butadine molecule.

UNIT III-MICROWAVE AND IR SPECTROSCOPY

Classification of molecules-Rotational spectra of diatomic molecules-Effect of isotropic substitution-the non- Rigid rotator-Rotational spectra of polyatomic molecules-Linear, symmetric top and asymmetric top molecules-Experimental techniques-Vibrating diatomic molecule-Diatomic vibrating rotator-Linear and symmetric top molecules-Analysis of infra Red techniques-Characteristic and group frequencies-IRspectrophotometer:Instrumentation and sample handling.

UNIT IV-RAMAN AND ELECTRONIC SPECTROSCOPY

Raman effect: Classical and quantum theory of Raman effect- Pure rotational and Vibrational Raman spectra of diatomic molecules-Raman spectrometer.

Electronic spectroscopy of diatomic molecules: Vibrational coarse structure-Progressions and sequences-The Franck-Condon principle-Dissociation energy and dissociation products-Rotational fine structure of electronic vibration transitions-the Fortrat parabolae.

UNIT V-RESONANCE SPECTROSCOPY

Nuclear magnetic resonance: Magnetic properties of nuclei-Resonance condition-NMR instrumentation-Additional techniques-Relaxation processes-Bloch equation-Dipolar Interaction-Chemical shift.

Electron Spin Resonance: Principle-ESR spectrometer-Total Hamiltonian-Hyperfine Structure-Spectra of free radicals in solution.

BOOKS FOR STUDY

- 1. C.N.Banwell, Elaine M.Mc Cash, Fundamental of Molecular Spectroscopy (Mc Graw Hill, New Delhi 2010).
- 2. Molecular Structure and Spectroscopy, G. Aruldhas, PHI Learning Private Limited, New Delhi (2009).
- 3. Gupta, S.L.Kumar, Sharma, Elements of Spectroscopy, Pragati Prakashan Publication, Meerut (2009).

UNIT	SECTIONS
1	3.6-3.11 in Book1 and relevant topics in Book2.
II	3.12-3.16-4.1-4.3,4.6-4.8 in Book1 and relevant topics in Book2
III	6.1-6.10,6.14,6.15,7.1-7.6,7.11,7.14,7.16,7.17 in Book1
IV	8.2-8.6,9.2,9.4,9.6-9.9 in Book1.
V	10.1-10.8,11.2-11.5(11.5.1 only),11.6(11.6.1-11.6.3 only) in Book1.

BOOKS FOR REFERENCE

- 1. P.S.Sindhu, Elements of Molecular Spectroscopy, New Age International, 2007.
- 2. A.K.Chandra, Introductory Quantum Chemistry, Mc Graw Hill, New Delhi, 2003

Core Course - VI - QUANTUM MECHANICS

Semester - II	
Instruction hrs. /week: 6 hrs.	

Course Code : P16PH7 Credit : 5

Objectives:

- ✤ To learn about the fundamentals of quantum mechanical formalism
- ✤ To learn about Hamiltonian operator formalisms
- ✤ To apply certain exactly solvable examples
- Fundamentals of approximations

UNIT – I INTRODUCTION TO QUANTUM MECHANICS

Wave – Particle - Dual nature of electron – De-Broglie wave length derivation – Wave (Eigen)function – Normalization technique – Orthonormal technique – Operator Formalism – Total energy, momentum, kinetic and potential energy operators – Ehrenfest Theorem - Derivation of Schrodinger's Equation – Time dependent and independent.

UNIT – II EXACTLY SOLVABLE PROBLEMS

Hydrogen atom – Ground state of Deuteron – Linear harmonic oscillator – Particle in a Box – Kronig-Penney square-Well periodic potential.

UNIT – III APPROXIMATIONS

Time dependent – Time independent perturbation theories - Stark effect - W.K.B approximation and its validity – Transition to continuum states "Fermi's Golden rule" – Adiabatic approximation.

UNIT - IV REPRESENTATION THEORY

Variation technique – Secular determinant – Hydrogen atom ion - Bracket notation - Schrodinger's, Heisenberg's and interaction pictures – Harmonic oscillator in matrix theory.

UNIT - V ANGULAR MOMENTUM AND RELATIVISTIC QUANTUM MECH.

Angular momentum formulation, L and J – Operator formulation of L and J – commutation properties – C-G coefficient (only qualitative treatment) – Klein-Gordon equation – Pauli's spin matrices.

BOOKS FOR STUDY

1. Gupta, Kumar and Sharma – Quantum Mechanics, S. Chand and Company publications.

2.G. Aruldhas - Quantum Mechanics – PHI Publications – 2008.

3.P.G. Puranik – Quantum Particle Dynamics, S. Chand and Company Publications.

4.L. Schiff – Quantum Mechanics – Tata Mc Graw Hill Publications, New Delhi.

UNIT	BOOK	CHAPTER/SECTION
Ι	1	1 (1.1,1.2,1.3,2.1—2.9)
II	1	2 /5 (5.1—5.13)
III	2/1	9.1,9.2,9.7,11.1,12.1 / 11,12
IV	2	3,3.9, 6.8,10.1,10.6
V	2/3	8.1,8.2,8.6, 14.1,14.2,14.3

BOOKS FOR REFERENCES:

- 1. V.Devanathan, Quantum Mechanics, Narosa Publishing House(2005).
- 2. P.M.Mathews and K.Venkatesan, A Text Book of Quantum Mechanics, Tata Mc Graw Hill publications, New Delhi, 1987).
- 3. V.K.Thankappan, Quantum Mechanics (Wiley Eastern, New Delhi, 1985).

Core Course - VII - NUCLEAR AND PARTICLE PHYSICS

Semester - II	
Instruction hrs. /week: 6 hrs.	

Course Code :P16PH8 Credit : 5

Objectives:

- To understand the basic structure and properties of the nucleus.
- ✤ To know the mechanism of the natural radioactivity.
- ***** To learn the different types of nuclear reactions.
- * To understand the properties of various fundamental particles.

UNIT 1: PROPERTIES OF ATOMIC NUCLEI

Nuclear size and shape – Semi empirical mass formula -Parity- Nuclear forces – properties of Deuteron-Simple theory of ground state of deuteron– Spin dependence of nuclear forces– Singlet and triplet states in deuteron ground state-Properties of nuclear forces- Meson theory of nuclear forces.

UNIT 2: RADIOACTIVE DECAYS

Range of alpha particles and Geiger-Nuttal law – Gamow's theory – Neutrino hypothesis – Fermi theory of beta decay – Selection rules –Parity violation – Selection rules of Gamma radiation – Gas filled detectors –G.M counters -Scintillation counter.

UNIT 3: NUCLEAR REACTIONS AND NUCLEAR MODELS

Reaction Energetics-Q-Value-Threshold energy – Level Width- Types of Nuclear Reactions- Compound Nucleus Theory – Breit - Wigner Formula– Liquid Drop Model-Shell Model-Optical Model.

UNIT 4: ACCELERATORS REACTORS AND PLASMA PHYSICS

Linear accelerator-Cyclotron – Synchro cyclotron – Betatron–Nuclear fission – distribution of mass of fission products –Bohr-Wheeler's theory of nuclear fission – chain reaction-Four factor formula-nuclear reactor- Nuclear fusion-Plasma-Fusion reactions in the plasma- conditions for maintained fusion reactions- Stellar energy.

UNIT 5: ELEMENTARY PARTICLES

Classification of Elementary Particles–Fundamental interactions among particles-Quantum numbers specifying states of particles-Discovery of antiparticles- Conservation Laws in production and decay processes– Symmetry and Conservation laws– Quark model-Unification of fundamental interactions.

BOOK FOR STUDY:

- 1. 1.Sathya Prakash, Text Book of Nuclear and particle Physics, Sultan Chand and Sons, New Delhi (2005).
- Units Sections
- I 1.5, 1.6, 1.17, 1.18, 7.4, 1.25, 2.1 to 2.4, 2.20.
- II 4.4, 4.7, 5.5, 5.7, 5.9, 5.11, 6.5, 10.12, 10.15, 10.16.
- III 8.1, 8.4, 8.5, 8.10 to 8.13, 7.3, 7.6, 7.11.
- IV 10.5 to 10.8, 9.2, 9.3, 9.10 to 9.13, 9.17 to 9.21.
- V 11.5 to 11.8, 11.10, 11.11, 11.14, 11.16.

BOOKS FOR REFERENCE:

- 1. V. Devanathan, Nuclear Physics, Naroso Publishing House (2006).
- 2. S. B. Patel, An Introduction to Nuclear Physics (Wiley-Eastern, New Delhi, 2008).
- 3. B. L. Cohen, Concepts of Nuclear Physics Tata Mc Graw Hill, New Delhi, (1993).
- 4. D. Griffiths, Introduction to Elementary Particles, Wiley International, New York, 1987
- 5. Arora. C. L, Nuclear Physics, S.Chand and Co, New Delhi (1999).
- 6. Sharma.R. C, Nuclear Physics, K. Nath and Co, Meerut (1997).

Core Course – VIII P PHYSICS PRACTICALS - II (General and Electronics)

Semester - II	Course Code	: P16PH9P
Instruction hrs /week: 6 hrs.	Credit	: 5

Objectives:

- To understand the concepts and techniques in physics experiments and develop instrument handling skills.
- To develop circuit building skills and trouble shooting ability in electronic experiments.

Any 15 Experiments only

- 1. Determination of q, n, σ by hyperbolic fringes method.
- 2. Determination of thermal conductivity of a good conductor Forbe's method.
- 3. Determination of bulk modulus of a liquid by ultrasonic interferometer.
- 4. Planck's constant- Photo electric cell.
- 5. Band gap energy of a semiconductor Four probe method.
- 6. Determination of L of a coil by Anderson's method.
- 7. Determination of e/m of an electron by Thomson's method
- 8. Determinations of wavelength of a laser source and thickness of a wire using Plane diffraction grating and thickness of a wire.
- 9. Polarizability of liquids by finding the refractive indices at different wavelengths.
- 10. Study of a fiber optic cable Numerical aperture and other parameters.
- 11. Magnetic susceptibility of a paramagnetic solution using Quincke's tube method.
- 12. Determination of specific rotatory power of a liquid using polarimeter.
- 13. K-map simplification (SOP and POS expressions) implementation with logic gates.
- 14. Characteristics of SCR and its applications.
- 15. Design and study of phase shift oscillator (Op-amp).
- 16. Design and study of bistable multivibrator.
- 17. Design and study of single stage amplifier (BJT)
- 18. Op -amp Current to Voltage and Voltage to current converters.
- 19. Dissociation energy of Iodine molecule Absorption spectrum.
- 20. Temperature coefficient using 555 timer.

Core Course - IX - ELECTROMAGNETIC THEORY

Semester - III Instruction hrs. /week: 6 hrs.

Course Code : P16PH11 Credit : 5

Objectives:

- To understand the basic concepts of electrostatics, magneto statics and Maxwell's equations.
- ✤ To learn electrostatics of macroscopic media.
- To study the propagation of plane electromagnetic waves..

UNIT I: INTRODUCTION TO ELECTROSTATICS

Coulomb's law – Electric field –Electrostatic potential- Electric field and potential of a Dipole- Gauss law – Applied to determination of electric field intensity due to infinite line charge distribution - Poisson and Laplace Equations in differential form–Method of images – Illustration: Point charge in the presence of (i) a grounded conducting sphere – Boundary condition for D vector and E vector.

UNIT II: MAGNETOSTATICS

Ampere's force law-Biot and Savart law and its applications-Long straight wire- Ampere's circuital law – Amperian loop - Application to magnetic flux density due to infinite current carrying sheet - Magnetic scalar potential-Magnetic vector potential – Boundary conditions on B and H – Drichlet and Newmann conditions.

UNIT III: ELECTRODYNAMICS

Equation of continuity- Maxwell's displacement current – Maxwell's equations – differential and integral forms - Poynting's theorem-Diffrential form of Poynting's theorem -Electromagnetic Potential (A and Φ) – Maxwell's equations in terms of Electromagnetic Potential- Gauge transformations – Lorentz gauge.

UNIT IV: PLANE ELECTRO MAGNETIC WAVES AND WAVE PROPAGATION

Plane wave equation – Propagation of e.m. waves in free space - in a nonconducting isotropic medium – in a conducting medium- Reflection and refraction of electromagnetic waves (Snell's Law) – Propagation of electromagnetic waves in a rectangular wave guide - TM and TE modes.

UNIT V: INTRODUCTION TO ANTENNAS

Radiation by an oscillating dipole – Skip distance – Radiation patterns of antennas – Directional characteristics – Gain of an antenna – Linear array of antennas (N-arrays) – Qualitative analysis of a dipole antenna.

BOOKS FOR STUDY:

- 1. S.L.Gupta and V.Kumar, Electrodynamics, Pragati Prakashan Publications (2004).
- 2. K.K.Chopra and G.C.Agarwal, Electromagnteic Theory, K.Nath and Co.(1993).
- 3. Sathya Prakash, Electromagnetic Theory, Sulthan Chand and Sons, New Delhi (2005).
- 4. S.K. Dash and S.R.Khunita Fundamentals of Electromagnetic Theory, PHI Publications, New Delhi 2011.

Unit	Books
I	Relevant chapters in Book 1&3
II	Relevant chapters in Book 2
III	Relevant chapters in Book 2
IV	Relevant chapters in Book 2&3
V	Relevant chapters in Book 2 & 4

BOOKS FOR REFERENCE:

1. D. Jackson, *Classical Electrodynamics* (Wiley Eastern Ltd., New Delhi, 1993). 2.D. Griffiths, *Introduction to Electrodynamics* (Prentice-Hall, New Delhi, 1995).

Core Course – X CRYSTAL GROWTH AND THIN FILM PHYSICS

Semester - III Instruction hrs. /week: 6 hrs.

Course Code : P16PH12 Credit : 5

Objectives:

- ✤ To study the nucleation and growth
- * To learn solution growth, gel growth, melt and vapour growth techniques
- * To learn fundamentals of thin film deposition techniques.
- * To learn the various methods of characterizing materials

UNIT 1: NUCLEATION AND GROWTH

Nucleation –Classical theory of nucleation - Spherical and cylindrical nucleus - Growth Kinetics - singular and rough faces- Models on surface roughness- Kossel, Stranski, Volmer (KSV) theory- Burton, Cabrera, Frank (BCF) theory

UNIT II: LOW TEMPERATURE GROWTH TECHNIQUES

Solution Growth Technique:

Solution - Solubility and super solubility – Expression of super saturation –Mier's T-C diagram - Constant temperature bath and crystallizer – Seed preparation and mounting - Slow cooling and solvent evaporation methods.

Gel Growth Technique:

Principle – Various types – Structure of gel – Importance of gel – Experimental procedure–Chemical reaction method – Single and double diffusion method – Chemical reduction method – Complex and decomplexion method – Advantages of gel method.

UNIT III: MELT AND VAPOUR GROWTH TECHNIQUES

Melt Growth: Bridgman technique - Basic process – Various crucibles design - Thermal consideration – Vertical Bridgman technique - Czochralski technique – Experimental arrangement – Growth process.

Vapour Growth: Physical vapour deposition – Chemical vapour deposition (CVD) – Chemical vapour Transport.

UNIT IV: THIN FILM DEPOSITION TECHNIQUES

Introduction- Thin Film growth stages- Application of thin films- Properties of thin films – Deposition techniques - Physical methods– Chemical methods- Resistive heating, Electron beam gun, Laser gun evaporation and flash evaporations, sputtering - Reactive Sputtering, Radio-Frequency sputtering - Chemical methods – Spray pyrolysis – Preparation of TCO tin oxide thin films.

UNIT V: CHARACTERIZATION TECHNIQUES

X – Ray Diffraction (XRD) – Powder and single crystal - Fourier Transform Infra Red Analysis(FT-IR) – Elemental analysis – Elemental Dispersive X-ray Analysis (EDAX) -Scanning Electron Microscopy (SEM) – UV-Vis-NIR Spectrometer – Etching (Chemical) – Vicker's micro hardness.

BOOKS FOR STUDY:

Relevant Chapters In

- 1. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986).
- 2. P. Santhana Ragavan and P. Ramasamy, Crystal Growth Processes and Methods, KRU Publications, Kumbakonam (2006).
- 3. A. Goswami, Thin Film Fundamentals, New Age International (P) Limited, New Delhi (1996).
- 4. Kasturi L. Chopra, Thin film Phenomena, Mc Graw Hill Book Company (1969).

BOOKS FOR REFERENCE:

- 1. Smith Donald.L, Thin Film Deposition, Mc Graw Hill, London (1995).
- 2. K.Ravichandran, K.Swaminathan, B.Sakthivel, Introduction to Thin Films, Research India Publications(2013).
- 3. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Thin Film Fundamentals, CBS, Publishers and Distributors, New Delhi.

Core Course - XI P PHYSICS PRACTICALS-III ADVANCED ELECTRONICS - I

Semester - III Instruction hrs /week: 6 hrs.

Course Code : P16PH13P Credit : 5

(Any FIFTEEN Experiments)

- 1. BCD to seven segment display
- 2. Study the function of Decoder and Encoder
- 3. Digital 8-Bit comparator
- 4. Study of counter using IC 7490 (0-9 and 00-99)
- 5. Study of DAC interfacing (DAC 0900).
- 6. Study of ADC interfacing (ADC 0809).
- 7. Phase Shift Network and Oscillator using IC 741
- 8. Wien Bridge Oscillator using IC 741
- 9. Digital to Analog Converter R-2R and weighted methods.
- 10. Study the function of Multiplexer and Demultiplexer.
- 11. Low pass and High pass filters using IC 741.
- 12. Traffic control system using microprocessor.
- 13. Control of stepper motor using microprocessor.
- 14. Digital Clock using microprocessor.
- 15. Microcontroller- 8-Bit addition and subtraction.
- 16. Microcontroller- 8 Bit multiplication and division.
- 17. Microcontroller- 16Bit division and multiplication.
- 18. Microcontroller- Ascending and Descending order.
- 19. Microcontroller- Pattern comparison
- 20. Solving linear equations by Operational Amplifier.

atonai Ampinter.

Core Course - XII - CONDENSED MATTER PHYSICS

Semester - IV	
Instruction hrs. /week: 6 hrs.	

Course Code : P16PH16 Credit : 5

Objectives:

- To study the crystal structure, lattice vibrations and thermal properties.
- To learn free electron theory, energy bands and semiconductor crystals
- To learn diamagnetism, paramagnetism, ferro magnetism and anti ferromagnetism
- To study dielectrics and ferroelectrics and superconductivity.

UNIT I: CRYSTAL STRUCTURE

Crystal classes and symmetry – 2D, 3D lattices – Bravais lattices – Point groups – Space groups — Ewald's sphere construction – Bragg's law – Laue theory of X-ray diffraction, Geometrical structure factor, Atomic scattering factor, calculations for diamond structure BCC, FCC and hcp structure - Powder and single crystal diffraction methods - Diffractometers.

UNIT II: LATTICE VIBRATIONS AND THERMAL PROPERTIES

Vibration of monoatomic lattices – Lattices with two atoms per primitive cell – Phonon momentum – Inelastic scattering of neutrons by phonons –Dulong and Petit's Law– Einstein model – Density of modes in one-dimension and three-dimension – Debye model of the lattice heat capacity – Thermal conductivity – Umklapp process.

UNIT III: ELECTRICAL PROPERTIES OF METALS AND SEMICONDUCTORS

Free electron gas- Ohm's law- Electrical conductivity and thermal conductivity-Wiedemann and Franz ratio- Quantum theory free electrons - Free electron gas in one dimension and three-dimension. Band theory of solids – The Kronig Penny model – Brillouin zone (Basic idea only) – Semiconductors –Intrinsic semiconductor-Carrier concentration in intrinsic Semiconductor-Hall effect-Experimental determination of Hall coefficient.

UNIT IV: MAGNETIC PROPERTIES OF MATERIALS

Langevin classical theory of diamagnetism and paramagnetism – Weiss theory -Quantum theory of paramagnetism –Ferromagnetism-Classical theory of ferromagnetism- Temperature dependence of spontaneous magnetisation – Domain theory-Anti ferromagnetism-Ferrites.

UNIT-V: DIELECTRICS AND FERROELECTRICS AND SUPERCONDUCTIVITY

Macroscopic electric field – Local electric field at an atom –Clausius- Mossotti equation – Occurrence of superconductivity – Meissner effect – London equation – Coherence length – BCS theory –Type I and Type II superconductors – Application of superconductors-Josephson superconductor tunneling – DC and AC Josephson effect— Flux quantization — SQUID.

BOOKS FOR STUDY:

Relevant Chapters in

- 1. Fundamental of Crystal Physics, Yu. L.S Irotin and M.P. Shaskolskaya Mir Publics Moscow (1983).
- 2. C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, 2008).
- 3. M. M. Woolfson, An Introduction to X-ray Crystallography (Cambridge University Press, Cambridge, 1970).
- 4. S. O. Pillai, Solid State Physics, New Age International, New Delhi (2007).

BOOKS FOR REFERENCE:

- 1. N. W. Ashcrof and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, Philadelphia, 1976).
- 2. J. S. Blakemore, Solid State Physics (Cambridge University Press, Cambridge, 1974).
- 3. A. J. Dekker, Solid State Physics (Mc Millan, Madras, 1998).
- 4. A Compendium based on Introductory Solid State Physics by HP Myers, C & C Press (1997).

Core Course – XIII P PHYSICS PRACTICAL IV : ADVANCED ELECTRONICS -II – P16PH17P Semester : IV Instruction Hours/Week: 6 Core Course:XIII

CHARACTERIZATION TECHNIQUES AND COMPUTER PRACTICALS

(Any Fifteen only -- Choosing a minimum of six experiments from each part)

CHARACTERIZATION TECHNIQUES

To characterize the given samples by using the following methods and their interpretations

- 1. XRD
- 2. FTIR
- 3. EDAX
- 4. SEM
- 5. UV-Vis
- 6. Micro hardness
- 7. Etching studies

COMPUTER PRACTICALS

- 1. Roots of algebraic equations Newton-Raphson method.
- 2. Least-squares curve fitting straight-line fit
- 3. Least-squares curve fitting exponential fit.
- 4. Solution of simultaneous linear algebraic equations Gauss elimination method.
- 5. Solution of simultaneous linear algebraic equations Gauss-Seidal method.
- 6. Interpolation Lagrange method.
- 7. Numerical differentiation Euler method.
- 8. Solution of ordinary differential equations Runge-Kutta 2nd order method.
- 9. Evaluation of definite integrals Monte Carlo method.
- 10. Numerical integration -Trapezoidal rule
- 11. Numerical integration –Simpson's 1/3rd rule.
- 12. Solution of ordinary differential equations Runge-Kutta 4th order method.
- 13. Calculation of mean, standard deviation and probability distribution of a set of random numbers.

Elective Course - I - SPECIAL ELECTRONICS - I Micro Electronic Devices

Semester - I	Course Code : P16PH5E	
Instruction hrs /week: 6 hrs.	Credit	:4

Objectives:

- To understand various techniques and concepts in electronics.
- To learn about the working diodes.
- To develop IC fabrications.

UNIT- I: SEMI CONDUCTOR DIODES

Continuity Equation (PN Junction) -Tunnel diode - Backward diode - Varactor diode – PIN diode-Schottky diode - IMPATT Diode - Gunn diode, Step recovery diode-Opto electronic diodes - LED and photo diode, Laser diode.

UNIT -II: SPECIAL SEMICONDUCTOR DEVICES

JFET- Structure and working - V-I Characteristics under different conditions - Biasing of JFET-DC load line-CS amplifier design-MOSFET: Depletion and enhancement type MOSFFT - Comparison of p with n-channel FETs - Digital MOSFET circuits-Complementary MOS, biasing the FET - FET as a voltage variable resistor (VVR) – Low Frequency common source and common drain amplifiers – Common source and drain amplifier at high frequencies.

UNIT – III: OPERATIONAL AMPLIFIERS

Operational amplifier characteristics-Input offset current and voltage- Frequency response - Inverting and non-inverting amplifier -Voltage follower -Differential amplifier-Instrumentation amplifier- Voltage to current and current to voltage conversions- log and antilog amplifiers -Integrating and differential circuits.

UNIT-IV: OP-AMP APPLICATIONS (OSCILLATORS AND CONVERTORS)

Oscillators: Schmitt's trigger -Square (Astable multivibrator)- Triangular-Sine wave generators-Phase shift and Wien bridge oscillator-Filter circuits - First order low pass Filter-Band pass filter-High pass filter.

Convertors: Triangular, basic D to A conversion: weighted resistor DAC - Binary R-2R ladder DAC -Basic A to D conversion: counter type ADC - successive approximation converter – Dual slope ADC.

UNIT – V: IC FABRICATIONS AND IC TIMER

Fabrications: Basic monolithic ICs - Epitaxial growth -Masking -Etching -Impurity diffusion-Fabricating monolithic resistors, diodes, transistors, inductors and capacitors - Circuit layout - Contacts and inter connections

555 Timer – Description of the functional diagram -Mono stable operation - Bistable multi vibrator - Applications-Missing pulse detector - Pulse width modulation - Schmitt's trigger.

BOOKS FOR STUDY:

- 1. Foundations of Electronics- D Chattopadhyay, P C Rakshit, B Saha, N.Purkait, New Age International Publishers, New Delhi (2006)
- 2. Operational Amplifier and Integrated Electronics Roy Choudry, New Age International Publishers, New Delhi (2006)
- 3. Basic Electronics- B.L. Theraja, S.Chand and Co New Age (2006).
- 4. Integrated Electronics J.Milmann and C.C. Halkias, Mc Graw Hill , New Delhi

Unit	Book	Section
I	1 3	5.1, 5.4, 5.5, 5.6 15.6,1 5.8 -15.10, 16.3, 16.8
II	3	26.1 - 26.2, 26.4, 26.5, 26.8-26.10 26.13 – 26.18, 27.1 – 27.4, 27.7 – 27.8
III	2	2.3, 2.3.3 -2.3.7, 4.3-4.5, 4.8, 4.10
IV	2	5.3, 5.4, 5.6, 5.7, 10.2, 10.2.1, 10.2.2, 10.3, 10.3.2, 10.3.4, 10.3.6
V	3 2	31.1-31.16 (selected portions) 8.1-8.3, 8.3.1(selected portion) 8.4, 8.4.1(selected portion)

BOOKS FOR REFERENCES:

Principles of Electronics- V. K. Mehta, Rohit Mehta, S.Chand and Co, New Delhi, 2008.
 Semiconductor Devices and Applications - A. Mottershed, New Age Int. Pub, New Delhi.

Elective Course – II - SPECIAL ELECTRONICS - II MICROCONTROLLER AND COMMUNICATION ELECTRONICS

Semester - I	п `	
Instruction	hrs /week:	6 hrs.

Course Code : P16PH10E Credit : 4

Objectives: To gain knowledge in advanced electronics.

UNIT I: MICROCONTROLLER ARCHITECTURE -8051

Review of Intel 8085 microprocessor architecture^{*} - Microprocessor and Microcontrollers comparison- The 8051 architecture - 8051 oscillator and clock - Program counter data pointer - CPU registers-Flags and the program status word (PSW) Internal memory- Internal RAM and ROM -The stack and the stack pointers. Special function registers-Signals of 8051-I/O ports -Timers and counters

UNIT II: ASSEMBLY LANGUAGE PROGRAMMING CONCEPTS:

8051-Programming - 8051 instruction syntax - Moving data: addressing modes – External data moves- Code memory- Read only data moves -Push and pop opcodes- Data exchanges example programs - Logical operations: Byte-level logical operations –Bit level logical operations- Rotate and swap operations- Example programs

UNIT III: ANTENNAS AND MICROWAVES

Antennas-Power gain-Effective parameters of an antenna-Hertzian dipole-Half wave Dipole-VHF,UHF and microwave antennas-TV Types of scanning-TV receiver-TV transmitter-Colour picture tubes-Microwave generation and application, Klystron -Magnetron-Wave guides-Rectangular wave guide-Mode of propagation-Circular wave guide-Riged and flexible wave guides

UNIT IV: COMMUNICATION SYSTEMS

Amplitude modulation-AM transmitter-Single Side Band principle-Balanced modulator-SSB generation and reception-Independent side band system-Frequency modulation-FM transmitted-FM detector-Pulse modulation-PAM-Pulse-time modulation-Pulse width modulation-Pulse code modulation-Frequency shift keying-Pulse shift keying-Telemetry.

UNIT V: CELLULAR TELEPHONE AND SATELLITE COMMUNICATIONS

Evolution of Cellular telephone-Analog cellular telephone - personal communication system, Digital cellular telephone, Global system for mobile communication.

Kepler's laws-Orbits-Geostationary orbit-Altitude and attitude control-Satellite station keeping-Transponders uplink-Power budget calculation-Down link power budget calculations-Multiple access methods.

BOOKS FOR STUDY

- 1. Kenneth J.Ayala, The 8051 Microcontroller-Architecture, Programming and Applications.
- 2. Krishnakanth Microprocessors and microcontroller, Prentice Hall of India (2013).
- 3. G.Kennedy, Electronic communication systems (TATA Mc Graw Hill publications, New Delhi (2003).
- 4. Dennis Roddy-John Coolen, Electronic Communications-IV Edition-Prentice Hall of India(2004).
- 5. Wayne Tomasi -Electronic Communication systems -Pearson Education.

*Only for the recap of learned concepts. Questions not to be asked from this portion.

Unit1	Book-1 chapters-3.1,3.2,2.4.2,4.3,4.6,6.3,6.4,6.5,6.21,6.24,6.25,6.29,6.30,6.36
Unit2	Book-2 chapters-7.3,7.4,7.7,7.8,7.9,7.10,7.11,9.2,9.5.1,9.6.1,9.6.4,9.8
Unit3	Book-3 chapters-16.2,16.4,16.5,16.6,16.7,16.8,16.9,16.10,16.18
	Book-2 chapters-11.2,11.4
	Book-3 chapters-14.1,14.2,14.3,13.2.1,13.2.2,213.2.3,13.2.4,13.3.1,13.3.2.
Unit4	Book-2 chapters-4.1,4.2.1,4.2.2,4.3.1,4.3.2,4.3.3,4.43,
	Book-3 chapters-10.2,10.13,10.14
	Book-4 chapters-10.1,10.2,11.14,11.18,11.20
Unit5	Book-3 chapters-19.2,19.3,19.4,19.5,19.6,19.8,19.9,19.13,9.14,19.15,19.18.

BOOKS FOR REFERENCE

- 1. Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with the 8085 (Penram International Publishing (India) Private Limited, Fifth Edition.
- 2. Gupta S.L and Kumar Hand book of Electronics, Pragati Prakasan Publications.
- 3. B.Ram, Fundamentals of Microprocessors and Microcomputers (Dhanpat Rai publication (P)Ltd, New Delhi, Fifth Reprint 1998.
- 4. Microprocessors and Microcontroller –P.S. Manoharan- Charulatha Publications (2013).

Elective Course – III NUMERICAL METHODS AND PROGRAMMING

Semester - III Instruction hrs /week: 6 hrs.

Course Code : P16PH14E Credit : 4

Objectives:

- To study the errors and measurements
- To learn algebraic, transcendental equations and interpolation
- ✤ To study numerical differentiation and integration
- To program computer programming

UNIT I: ERRORS AND MEASUREMENTS

General formula for Errors-Errors and its types-Empirical formula-Principle of least squares- Fitting a straight line-Fitting a parabola-Fitting an exponential curves – Fitting the curve ($y=ae^{bx}$)- C program for fitting a straight line.

UNIT II: ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

The iteration method- Newton- Raphson method –Convergence of Newton-Raphson method-C program for Newton-Raphson method.

Linear Algebraic Equations

Gauss elimination method-Jordan's modification-Gauss-Seidel method of iteration.

UNIT III: INTERPOLATION

Linear interpolation-Gregory-Newton forward and backward interpolation formula-Central difference formula-Gauss forward and backward interpolation formula-Lagrange's interpolation formula-Newton's formula for unequal intervals.

UNIT IV: NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation for solving first order differential equations:-Euler's method-Improved Euler's method-Runge-Kutta second and fourth order method for solving first orders differential equations-.C program for Euler's method, Runge -Kutta order method. Numerical integration: Trapezoidal rule-Simpson's 1/3rdrule-Formula and derivation.

UNIT V: C PROGRAMMING

Structure of a C program – Primary data types- Constants- Integers- Various types of operators and expressions – Control structure- if – if –else- switch- go to –break and Continue statements – while – do, while – for statements – Declaration and initialization of arrays- functions – calling a function –return values and their types – structure definition and initialization – arrays of structures – arrays within structures –unions.

BOOKS FOR STUDY:

- 1. Numerical Recipes in C, W.H. Press, B.P.Flannery, S.A.Teukolsky, W.T. Vetterling, Cambridge University (1996).
- 2. M.K.Venkataraman, Numerical methods in Science and Engineering, National Publishing Company, Chennai (2004).
- 3. Programming in ANSI-C E.Balagurusamy- Tata Mc Graw Hill Publications (2004).
- 4. Program Materials given by the Department of Physics, National College, Tiruchirappalli. Unit V.

BOOKS FOR REFERENCE:

- 1. S.S.Sastry, Introductory Methods of Numerical Analysis, PHI, New Delhi (2003).
- 2. Numerical Methods in Science and Engineering The National Publishing Co. Madras (2001).
- 3. Numerical Methods in C and C++, Veerarajan, S.Chand, New Delhi (2006).

Elective Course – IV ELEMENTS OF NANOSCIENCE AND ITS APPLICATIONS

Semester - III	
Instruction hrs /week: 6 hrs.	

Course Code : P16PH15E Credit : 4

Objective:

- To understand the history, background and the nature of the nano science and technology as well as the quantum and nano sized scale effects at nano phase.
- To get familiar with the nano characterization methods and to understand the potential applications of nanotechnology.

UNIT I: INTRODUCTION TO NANO AND TYPES OF NANOMATERIALS

Nanoscience and nanotechnology – Need of nano - Origins of concepts of nano-nano and energetics – Top down and Bottom up approaches – Types of nanomaterials (introductory ideas only):-One dimensional(1D)– Two dimensional(2D)- Three dimensional(3D) nanostructured materials – Quantum dots – Quantum wire. Quantum well – Quantum Dot – Excitation confinement in Quantum Dots.

Unit II: NANO STRUCTURESEFFECTS

Fullerenes - properties of fullerenes-Carbon Nano Tubes (CNTs)- Types, properties, synthesis and applications of CNTs. Polymers – Biometics – Self assembled monolayers – Nano structured metals and alloys – Semiconductors – Band gap engineering and optical response.

Unit III: NANOMATERIALS FABRICATION

Synthesis of oxide nanoparticles by sol – gel processing - Electrochemical deposition – Electro spinning – Lithography –Atomic Layer Deposition – Langmuir - Biodgett films – Zeolite cages – Core Shell structures – Organic – Inorganic hybrids.

UNIT IV: NANOMATERIAL CHARACTERIZATION

Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Scanning Probe Microscopy (SPM) techniques-(Principle, Experimental set up, procedure and utility for the all the techniques)

UNIT V: APPLICATIONS

Molecular electronics and Nano electronics – Nanobots- Biological applications of Nanoparticles- catalysis by gold Nanoparticles- band gap engineered quantum devices-Nano mechanics- CNT emitters- Photo electro chemical cells- Photonic crystals- Plasmon Waveguides.

BOOKS FOR STUDY:

- 1. T.Pradeep et al., A text book of Nano science and Nanotechnology, (2012), TMGH, New Delhi.
- 2. Guozhong Cao, Nanostructures and Nano materials (2004) Imperial College Press, London.
- 3. C.P. Poole and F.J. Owens, Introduction to Nanotechnology, Wiley-India, 2009.

BOOKS FOR REFERENCE:

- 1. Lusia Filipponian Duncan Sutherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities, 2013 (ISBN 978 -92 -79 -21437 -0)European Commission, B-1049 Brussels.
- 2. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.
- M. Wilson, K. Kannangara, G Smith, M. Simmons, B. Raguse, Nanotechnology: Basic Science and Emerging Technologies, Overseas Press India Pvt. Ltd, New Delhi, First Edition, 2005.
- 4. Nanotechnology by S. Shanmugam (2010), MJP Publishers, Chennai.

Elective Course - V ADVANCED OPTICS

Semester - IV Instruction hrs /week: 6 hrs. *Objective:*

Course Code : P16PH18E Credit : 4

- ✤ To Study the ideas of fibre optics and lasers.
- ***** To introduce the non-linear optics and nonlinear optical materials.
- To get familiar with the optical solitons.

UNIT I: FIBER OPTICS

Introduction-Principle of optical fiber-Acceptance angle-Numerical aperture-Types of Optical fribres-Single mode and multimode optical fibres-Characteristics of step index and graded index fibres characteristics-Fiber attenuation-Dispersion and its types-Bandwidth- Distance product-Light sources-LED-Detectors-Photo diode-Optic fiber communication system-Advantages of optic fiber communication.

UNIT II: LASERS

Spontaneous emission – Stimulated emission – Einstein coefficients – Population Inversion –Pumping action – Schawlow and Town condition-Laser Characteristics. Solid state laser: Nd-YAG- Ruby laser- Gas lasers: Helium – Neon –CO₂ laser –Argon-Ion laser- Semiconductor laser-Dye laser.

UNIT III: UNIT V: OPTICAL SOLITONS

Modulation instability: Linear stability analysis - Gain spectrum - Experimental Observation – Ultra short pulse generation - Impact on light wave systems - Fiber Solitons - Inverse scattering method - Fundamental soliton - Higher-Order solitons - Experimental confirmation – Soliton stability.

Types of solitons: Dark solitons - Dispersion-Managed solitons- Bistable solitons.

UNIT IV: NON-LINEAR OPTICS

Introduction -Harmonic Generation-Second Harmonic Generation- Phase matching-Third Harmonic Generation-Optical mixing: sum and difference frequencies-Parametric Generation of light-Self-focusing of intense light beams-Phase matching-Optical Matching-Multi quantum photo electric effect-Two photon process and its theory.

UNIT V: NON LINEAR OPTICAL MATERIALS

Basic requirements-Inorganics-Borates-Organics-Urea-Nitro aniline-Semi organics-Thiourea complex-Laser induced surface damage threshold-Kurtz and Perry powder technique.

BOOKS FOR STUDY:

- 1. Govind, P. Agarwal, Fiber-Optics Communication Systems, 3rdEdn. John Wiley and Sons, Singapore (2003).
- 2. B. B. Laud, Lasers and Non-Linear Optics, New Age International Publishers, New Delhi (2008).
- 3. Nonlinear Fiber Optics, Third Edition, Govind P. Agrawal Academic Press, 2001.
- 4. Lecture notes and course material: Non Linear Optical Materials, Department of Physics, National College (Autonomous), Tiruchirappalli for Unit V.
